BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 22176720)

  • 1. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation.
    Liu G; Liu M; Kim EH; Maaty WS; Bothner B; Lei B; Rensing C; Wang G; McDermott TR
    Environ Microbiol; 2012 Jul; 14(7):1624-34. PubMed ID: 22176720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c.
    Watson C; Niks D; Hille R; Vieira M; Schoepp-Cothenet B; Marques AT; Romão MJ; Santos-Silva T; Santini JM
    Biochim Biophys Acta Bioenerg; 2017 Oct; 1858(10):865-872. PubMed ID: 28801050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The redox-sensing mechanism of Agrobacterium tumefaciens NieR as a thiol-based oxidation sensor for hypochlorite stress.
    Nontaleerak B; Eurtivong C; Weeraphan C; Buncherd H; Chokchaichamnankit D; Srisomsap C; Svasti J; Sukchawalit R; Mongkolsuk S
    Free Radic Biol Med; 2023 Nov; 208():211-220. PubMed ID: 37544488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring solute binding proteins in Pseudomonas aeruginosa that bind to γ-aminobutyrate and 5-aminovalerate and their role in activating sensor kinases.
    Cerna-Vargas JP; Krell T
    Microbiologyopen; 2024 Jun; 13(3):e1415. PubMed ID: 38780167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation.
    Hui CY; Liu MQ; Guo Y
    World J Microbiol Biotechnol; 2024 May; 40(6):192. PubMed ID: 38709285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation.
    William VU; Magpantay HD
    Microorganisms; 2023 Dec; 12(1):. PubMed ID: 38257901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms.
    Li Y; Yu Y; Yang X; Pat-Espadas AM; Vinuesa P; Herzberg M; Chen J; Rosen BP; Feng R; Rensing C
    J Hazard Mater; 2024 Jan; 462():132796. PubMed ID: 37865075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain.
    Wu YF; Chen J; Xie WY; Peng C; Tang ST; Rosen BP; Kappler A; Zhang J; Zhao FJ
    Environ Microbiol; 2023 Aug; 25(8):1538-1548. PubMed ID: 36978205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic Exposure Causes Global Changes in the Metalloproteome of
    Larson J; Tokmina-Lukaszewska M; Fausset H; Spurzem S; Cox S; Cooper G; Copié V; Bothner B
    Microorganisms; 2023 Feb; 11(2):. PubMed ID: 36838347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AsgeneDB: a curated orthology arsenic metabolism gene database and computational tool for metagenome annotation.
    Song X; Li Y; Stirling E; Zhao K; Wang B; Zhu Y; Luo Y; Xu J; Ma B
    NAR Genom Bioinform; 2022 Dec; 4(4):lqac080. PubMed ID: 36330044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Regulatory Strategies of Arsenite Oxidation by Two Isolated
    Yuan C; Li P; Qing C; Kou Z; Wang H
    Front Microbiol; 2022; 13():817891. PubMed ID: 35359718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial two-component systems as sensors for synthetic biology applications.
    Lazar JT; Tabor JJ
    Curr Opin Syst Biol; 2021 Dec; 28():. PubMed ID: 34917859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency.
    Diba F; Khan MZH; Uddin SZ; Istiaq A; Shuvo MSR; Ul Alam ASMR; Hossain MA; Sultana M
    Sci Rep; 2021 Oct; 11(1):21312. PubMed ID: 34716390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of solute binding proteins in signal transduction.
    Matilla MA; Ortega Á; Krell T
    Comput Struct Biotechnol J; 2021; 19():1786-1805. PubMed ID: 33897981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gut microbiome and arsenic-induced disease-iAs metabolism in mice.
    Yang Y; Chi L; Lai Y; Hsiao YC; Ru H; Lu K
    Curr Environ Health Rep; 2021 Jun; 8(2):89-97. PubMed ID: 33852125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing the ArsR-Regulated Arsenic Stimulon.
    Rawle R; Saley TC; Kang YS; Wang Q; Walk S; Bothner B; McDermott TR
    Front Microbiol; 2021; 12():630562. PubMed ID: 33746923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Metabolomics and Targeted Gene Transcription Analysis Reveal Global Bacterial Antimonite Resistance Mechanisms.
    Li J; Zhang Y; Wang X; Walk ST; Wang G
    Front Microbiol; 2021; 12():617050. PubMed ID: 33584619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation.
    Shi K; Wang Q; Wang G
    Front Microbiol; 2020; 11():569282. PubMed ID: 33072028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Responses to Arsenite Exposure Regulated through Histidine Kinases PhoR and AioS in
    Rawle RA; Tokmina-Lukaszewska M; Shi Z; Kang YS; Tripet BP; Dang F; Wang G; McDermott TR; Copie V; Bothner B
    Microorganisms; 2020 Sep; 8(9):. PubMed ID: 32887433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efflux proteins MacAB confer resistance to arsenite and penicillin/macrolide-type antibiotics in Agrobacterium tumefaciens 5A.
    Shi K; Cao M; Li C; Huang J; Zheng S; Wang G
    World J Microbiol Biotechnol; 2019 Jul; 35(8):115. PubMed ID: 31332542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.