These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22176729)
1. Graphene multilayers as gates for multi-week sequential release of proteins from surfaces. Hong J; Shah NJ; Drake AC; DeMuth PC; Lee JB; Chen J; Hammond PT ACS Nano; 2012 Jan; 6(1):81-8. PubMed ID: 22176729 [TBL] [Abstract][Full Text] [Related]
2. Multilayered Graphene Nano-Film for Controlled Protein Delivery by Desired Electro-Stimuli. Choi M; Kim KG; Heo J; Jeong H; Kim SY; Hong J Sci Rep; 2015 Dec; 5():17631. PubMed ID: 26621344 [TBL] [Abstract][Full Text] [Related]
3. Inherent charge-shifting polyelectrolyte multilayer blends: a facile route for tunable protein release from surfaces. Hong J; Kim BS; Char K; Hammond PT Biomacromolecules; 2011 Aug; 12(8):2975-81. PubMed ID: 21718027 [TBL] [Abstract][Full Text] [Related]
4. Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. Su X; Kim BS; Kim SR; Hammond PT; Irvine DJ ACS Nano; 2009 Nov; 3(11):3719-29. PubMed ID: 19824655 [TBL] [Abstract][Full Text] [Related]
5. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. DeMuth PC; Moon JJ; Suh H; Hammond PT; Irvine DJ ACS Nano; 2012 Sep; 6(9):8041-51. PubMed ID: 22920601 [TBL] [Abstract][Full Text] [Related]
6. Controlling the surface-mediated release of DNA using 'mixed multilayers'. Appadoo V; Carter MC; Lynn DM Bioeng Transl Med; 2016 Jun; 1(2):181-192. PubMed ID: 27981243 [TBL] [Abstract][Full Text] [Related]
7. Functionalized graphene sheets for intracellular controlled release of therapeutic agents. Tu Z; Wycisk V; Cheng C; Chen W; Adeli M; Haag R Nanoscale; 2017 Dec; 9(47):18931-18939. PubMed ID: 29177354 [TBL] [Abstract][Full Text] [Related]
8. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282 [TBL] [Abstract][Full Text] [Related]
9. Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: tunable temporal control and sequential, multi-agent release. Sun B; Lynn DM J Control Release; 2010 Nov; 148(1):91-100. PubMed ID: 20678530 [TBL] [Abstract][Full Text] [Related]
10. In vivo sustained release of siRNA from solid lipid nanoparticles. Lobovkina T; Jacobson GB; Gonzalez-Gonzalez E; Hickerson RP; Leake D; Kaspar RL; Contag CH; Zare RN ACS Nano; 2011 Dec; 5(12):9977-83. PubMed ID: 22077198 [TBL] [Abstract][Full Text] [Related]
11. PEGylated graphene oxide-mediated protein delivery for cell function regulation. Shen H; Liu M; He H; Zhang L; Huang J; Chong Y; Dai J; Zhang Z ACS Appl Mater Interfaces; 2012 Nov; 4(11):6317-23. PubMed ID: 23106794 [TBL] [Abstract][Full Text] [Related]
12. High efficient anti-cancer drug delivery systems using tea polyphenols reduced and functionalized graphene oxide. Wang X; Hao L; Zhang C; Chen J; Zhang P J Biomater Appl; 2017 Mar; 31(8):1108-1122. PubMed ID: 28084865 [TBL] [Abstract][Full Text] [Related]
13. Degradable polyelectrolyte multilayers that promote the release of siRNA. Flessner RM; Jewell CM; Anderson DG; Lynn DM Langmuir; 2011 Jun; 27(12):7868-76. PubMed ID: 21574582 [TBL] [Abstract][Full Text] [Related]
14. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues. Chung K; Rani A; Lee JE; Kim JE; Kim Y; Yang H; Kim SO; Kim D; Kim DH ACS Appl Mater Interfaces; 2015 Jan; 7(1):144-51. PubMed ID: 25555067 [TBL] [Abstract][Full Text] [Related]
15. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery. Yang YQ; Zhao B; Li ZD; Lin WJ; Zhang CY; Guo XD; Wang JF; Zhang LJ Acta Biomater; 2013 Aug; 9(8):7679-90. PubMed ID: 23669619 [TBL] [Abstract][Full Text] [Related]
16. Stimuli-responsive controlled release and molecular transport from hierarchical hollow silica/polyelectrolyte multilayer formulations. Cao S; Zhang Y; Zhou L; Chen J; Fang L; Fei D; Zhu H; Ge Y J Mater Chem B; 2014 Nov; 2(41):7243-7249. PubMed ID: 32261803 [TBL] [Abstract][Full Text] [Related]
17. Graphene Oxide-Assisted Accumulation and Layer-by-Layer Assembly of Antibacterial Peptide for Sustained Release Applications. Cao M; Zhao W; Wang L; Li R; Gong H; Zhang Y; Xu H; Lu JR ACS Appl Mater Interfaces; 2018 Jul; 10(29):24937-24946. PubMed ID: 29956912 [TBL] [Abstract][Full Text] [Related]
18. Graphene Oxide Based Nanocarrier Combined with a pH-Sensitive Tracer: A Vehicle for Concurrent pH Sensing and pH-Responsive Oligonucleotide Delivery. Hsieh CJ; Chen YC; Hsieh PY; Liu SR; Wu SP; Hsieh YZ; Hsu HY ACS Appl Mater Interfaces; 2015 Jun; 7(21):11467-75. PubMed ID: 25945595 [TBL] [Abstract][Full Text] [Related]
19. Magnetic Fe3O4-graphene composites as targeted drug nanocarriers for pH-activated release. Fan X; Jiao G; Zhao W; Jin P; Li X Nanoscale; 2013 Feb; 5(3):1143-52. PubMed ID: 23288110 [TBL] [Abstract][Full Text] [Related]
20. Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly. Pargaonkar N; Lvov YM; Li N; Steenekamp JH; de Villiers MM Pharm Res; 2005 May; 22(5):826-35. PubMed ID: 15906179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]