These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 22176769)
1. Light utilization efficiency in photosynthetic microbial mats. Al-Najjar MA; de Beer D; Kühl M; Polerecky L Environ Microbiol; 2012 Apr; 14(4):982-92. PubMed ID: 22176769 [TBL] [Abstract][Full Text] [Related]
2. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem. Al-Najjar MA; de Beer D; Jørgensen BB; Kühl M; Polerecky L ISME J; 2010 Mar; 4(3):440-9. PubMed ID: 19907503 [TBL] [Abstract][Full Text] [Related]
3. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light. Lichtenberg M; Brodersen KE; Kühl M Front Microbiol; 2017; 8():452. PubMed ID: 28400749 [TBL] [Abstract][Full Text] [Related]
4. Radiative Energy Budgets in a Microbial Mat Under Different Irradiance and Tidal Conditions. Haro S; Brodersen KE; Bohórquez J; Papaspyrou S; Corzo A; Kühl M Microb Ecol; 2019 May; 77(4):852-865. PubMed ID: 30852639 [TBL] [Abstract][Full Text] [Related]
5. Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia. Fisher A; Wangpraseurt D; Larkum AWD; Johnson M; Kühl M; Chen M; Wong HL; Burns BP FEMS Microbiol Ecol; 2019 Jan; 95(1):. PubMed ID: 30380056 [TBL] [Abstract][Full Text] [Related]
6. Effect of oxygen concentration on photosynthesis and respiration in two hypersaline microbial mats. Grötzschel S; de Beer D Microb Ecol; 2002 Oct; 44(3):208-16. PubMed ID: 12154389 [TBL] [Abstract][Full Text] [Related]
7. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy. Klatt JM; Meyer S; Häusler S; Macalady JL; de Beer D; Polerecky L ISME J; 2016 Apr; 10(4):921-33. PubMed ID: 26405833 [TBL] [Abstract][Full Text] [Related]
8. Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light. Middelboe AL; Sand-Jensen K; Binzer T Oecologia; 2006 Dec; 150(3):464-76. PubMed ID: 16967271 [TBL] [Abstract][Full Text] [Related]
9. Phototrophic microbes form endolithic biofilms in ikaite tufa columns (SW Greenland). Trampe E; Castenholz RW; Larsen JEN; Kühl M Environ Microbiol; 2017 Nov; 19(11):4754-4770. PubMed ID: 28949068 [TBL] [Abstract][Full Text] [Related]
10. Bio-optical Characteristics and the Vertical Distribution of Photosynthetic Pigments and Photosynthesis in an Artificial Cyanobacterial Mat. Kühl M; Fenchel T Microb Ecol; 2000 Aug; 40(2):94-103. PubMed ID: 11029078 [TBL] [Abstract][Full Text] [Related]
11. Radiative energy budget reveals high photosynthetic efficiency in symbiont-bearing corals. Brodersen KE; Lichtenberg M; Ralph PJ; Kühl M; Wangpraseurt D J R Soc Interface; 2014 Apr; 11(93):20130997. PubMed ID: 24478282 [TBL] [Abstract][Full Text] [Related]
12. Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Hubas C; Jesus B; Passarelli C; Jeanthon C Res Microbiol; 2011 Nov; 162(9):858-68. PubMed ID: 21530653 [TBL] [Abstract][Full Text] [Related]
13. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific. Tarasov VG Adv Mar Biol; 2006; 50():267-421. PubMed ID: 16782453 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic performance of phototrophic biofilms in extreme acidic environments. Souza-Egipsy V; Altamirano M; Amils R; Aguilera A Environ Microbiol; 2011 Aug; 13(8):2351-8. PubMed ID: 21605310 [TBL] [Abstract][Full Text] [Related]
15. Aerobic sulfate reduction in microbial mats. Canfield DE; Des Marais DJ Science; 1991 Mar; 251():1471-3. PubMed ID: 11538266 [TBL] [Abstract][Full Text] [Related]
16. [Effects of inorganic carbon supplies and light on photosynthetic functions of Pyropia haitanensis.]. Jiang H; Zou DH; Lou WY Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):515-521. PubMed ID: 29692066 [TBL] [Abstract][Full Text] [Related]
17. [Biogeochemical processes in the algal-bacterial mats of the Urinskii alkaline hot spring]. Brianskaia AV; Namsaraev ZB; Kalashnikova OM; Barkhutova DD; Namsaraev BB; Gorlenko VM Mikrobiologiia; 2006; 75(5):702-12. PubMed ID: 17091594 [TBL] [Abstract][Full Text] [Related]
18. [The effect of light and temperature of the CO Schulze ED Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125 [TBL] [Abstract][Full Text] [Related]
19. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Montgomery RA; Givnish TJ Oecologia; 2008 Mar; 155(3):455-67. PubMed ID: 18210160 [TBL] [Abstract][Full Text] [Related]
20. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Parr LB; Perkins RG; Mason CF Water Res; 2002 Apr; 36(7):1735-42. PubMed ID: 12044073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]