These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22177080)

  • 1. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride Tedlar® bags.
    Kim YH; Kim KH; Jo SH; Jeon EC; Sohn JR; Parker DB
    Anal Chim Acta; 2012 Jan; 712():162-7. PubMed ID: 22177080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing odorants recovery from a novel metallized fluorinated ethylene propylene gas sampling bag.
    Zhu W; Koziel JA; Cai L; Wright D; Kuhrt F
    J Air Waste Manag Assoc; 2015 Dec; 65(12):1434-45. PubMed ID: 26453185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags.
    Parker DB; Perschbacher-Buser ZL; Cole NA; Koziel JA
    Sensors (Basel); 2010; 10(9):8536-52. PubMed ID: 22163671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility and temporal storability of gas phase standards of volatile organic compounds prepared through liquid phase vaporization in polyester aluminum bags at room temperature.
    Ha SH; Szulejko J; Kim KH
    Chemosphere; 2022 Mar; 291(Pt 2):132965. PubMed ID: 34801573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the storage stability of ammonia in polyester aluminum bags.
    Vikrant K; Roy K; Kim KH; Bhattacharya SS
    Environ Res; 2019 Oct; 177():108596. PubMed ID: 31349176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters.
    Koziel JA; Spinhirne JP; Lloyd JD; Parker DB; Wright DW; Kuhrt FW
    J Air Waste Manag Assoc; 2005 Aug; 55(8):1147-57. PubMed ID: 16187584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS).
    Czippelová B; Nováková S; Šarlinová M; Baranovičová E; Urbanová A; Turianiková Z; Krohová JČ; Halašová E; Škovierová H
    J Breath Res; 2024 May; 18(3):. PubMed ID: 38701772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of poly(ethylene terephtalate) film bag to sample and remove humidity from atmosphere containing volatile organic compounds.
    Beghi S; Guillot JM
    J Chromatogr A; 2008 Mar; 1183(1-2):1-5. PubMed ID: 18243220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods to Detect Volatile Organic Compounds for Breath Biopsy Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry.
    Schulz E; Woollam M; Grocki P; Davis MD; Agarwal M
    Molecules; 2023 Jun; 28(11):. PubMed ID: 37299010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some insights into analytical bias involved in the application of grab sampling for volatile organic compounds: a case study against used Tedlar bags.
    Ghosh S; Kim KH; Sohn JR
    ScientificWorldJournal; 2011; 11():2160-77. PubMed ID: 22235175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of control parameters for the sulfur gas storability with bag sampling methods.
    Jo SH; Kim KH; Shon ZH; Parker D
    Anal Chim Acta; 2012 Aug; 738():51-8. PubMed ID: 22790700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Storage Stability of Volatile Organic Compounds from Petrochemical Plant of China in Different Sample Bags.
    Han F; Zhong H; Li T; Wang Y; Liu F
    J Anal Methods Chem; 2020; 2020():9842569. PubMed ID: 32257509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental approach to assess sorptive loss properties of volatile organic compounds in the sampling bag system.
    Kim YH; Kim KH
    J Sep Sci; 2012 Nov; 35(21):2914-21. PubMed ID: 23065996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of Tedlar gas sampling bags for siloxane quantification in landfill gas.
    Ajhar M; Wens B; Stollenwerk KH; Spalding G; Yüce S; Melin T
    Talanta; 2010 Jun; 82(1):92-8. PubMed ID: 20685441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of odorous volatile organic compounds between direct injection and solid-phase microextraction: development and validation of a gas chromatography-mass spectrometry-based methodology.
    Pandey SK; Kim KH
    J Chromatogr A; 2009 Jul; 1216(28):5436-44. PubMed ID: 19493534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of sampling bags for the analysis of volatile organic compounds in breath.
    Ghimenti S; Lomonaco T; Bellagambi FG; Tabucchi S; Onor M; Trivella MG; Ceccarini A; Fuoco R; Di Francesco F
    J Breath Res; 2015 Dec; 9(4):047110. PubMed ID: 26654981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags.
    Mochalski P; King J; Unterkofler K; Amann A
    Analyst; 2013 Mar; 138(5):1405-18. PubMed ID: 23323261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias of Tedlar bags in the measurement of agricultural odorants.
    Trabue SL; Anhalt JC; Zahn JA
    J Environ Qual; 2006; 35(5):1668-77. PubMed ID: 16899738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of Tedlar® bags for breath-gas sampling and analysis.
    Beauchamp J; Herbig J; Gutmann R; Hansel A
    J Breath Res; 2008 Dec; 2(4):046001. PubMed ID: 21386188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of two calibration procedures using thermal desorption-gas chromatography in the analysis of odorous volatile compounds.
    Kabir E; Kim KH
    J Chromatogr Sci; 2011 Oct; 49(9):731-8. PubMed ID: 22586250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.