These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22177386)

  • 1. Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways.
    Amelot N; Dorlhac de Borne F; San Clemente H; Mazars C; Grima-Pettenati J; Brière C
    Cell Calcium; 2012 Feb; 51(2):117-30. PubMed ID: 22177386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of cryptogein mutants, a proteinaceous elicitor from Phytophthora, with altered abilities to induce a defense reaction in tobacco cells.
    Lochman J; Kasparovsky T; Damborsky J; Osman H; Marais A; Chaloupkova R; Ponchet M; Blein JP; Mikes V
    Biochemistry; 2005 May; 44(17):6565-72. PubMed ID: 15850390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance.
    van Loon LC; Bakker PA; van der Heijdt WH; Wendehenne D; Pugin A
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1609-21. PubMed ID: 18986257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner.
    Amelot N; Carrouche A; Danoun S; Bourque S; Haiech J; Pugin A; Ranjeva R; Grima-Pettenati J; Mazars C; Briere C
    Plant Cell Environ; 2011 Jan; 34(1):149-61. PubMed ID: 20946589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptogein-induced cell cycle arrest at G2 phase is associated with inhibition of cyclin-dependent kinases, suppression of expression of cell cycle-related genes and protein degradation in synchronized tobacco BY-2 cells.
    Ohno R; Kadota Y; Fujii S; Sekine M; Umeda M; Kuchitsu K
    Plant Cell Physiol; 2011 May; 52(5):922-32. PubMed ID: 21565910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors.
    Manzoor H; Chiltz A; Madani S; Vatsa P; Schoefs B; Pugin A; Garcia-Brugger A
    Cell Calcium; 2012 Jun; 51(6):434-44. PubMed ID: 22410211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of putative voltage-dependent Ca2+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells.
    Kadota Y; Furuichi T; Ogasawara Y; Goh T; Higashi K; Muto S; Kuchitsu K
    Biochem Biophys Res Commun; 2004 May; 317(3):823-30. PubMed ID: 15081414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco.
    Lecourieux-Ouaked F; Pugin A; Lebrun-Garcia A
    Mol Plant Microbe Interact; 2000 Aug; 13(8):821-9. PubMed ID: 10939253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco.
    Wendehenne D; Lamotte O; Frachisse JM; Barbier-Brygoo H; Pugin A
    Plant Cell; 2002 Aug; 14(8):1937-51. PubMed ID: 12172032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle dependence of elicitor-induced signal transduction in tobacco BY-2 cells.
    Kadota Y; Watanabe T; Fujii S; Maeda Y; Ohno R; Higashi K; Sano T; Muto S; Hasezawa S; Kuchitsu K
    Plant Cell Physiol; 2005 Jan; 46(1):156-65. PubMed ID: 15659447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of putative glutamate receptors in plant defence signaling and NO production.
    Vatsa P; Chiltz A; Bourque S; Wendehenne D; Garcia-Brugger A; Pugin A
    Biochimie; 2011 Dec; 93(12):2095-101. PubMed ID: 21524679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.
    Lamotte O; Gould K; Lecourieux D; Sequeira-Legrand A; Lebrun-Garcia A; Durner J; Pugin A; Wendehenne D
    Plant Physiol; 2004 May; 135(1):516-29. PubMed ID: 15122020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of plasma membrane proteins in plant defense responses. Analysis of the cryptogein signal transduction in tobacco.
    Lebrun-Garcia A; Bourque S; Binet MN; Ouaked F; Wendehenne D; Chiltz A; Schäffner A; Pugin A
    Biochimie; 1999 Jun; 81(6):663-8. PubMed ID: 10433120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The elicitor cryptogein blocks glucose transport in tobacco cells.
    Bourque S; Lemoine R; Sequeira-Legrand A; Fayolle L; Delrot S; Pugin A
    Plant Physiol; 2002 Dec; 130(4):2177-87. PubMed ID: 12481101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco.
    Rosnoblet C; Bègue H; Blanchard C; Pichereaux C; Besson-Bard A; Aimé S; Wendehenne D
    Plant Cell Environ; 2017 Apr; 40(4):491-508. PubMed ID: 26662183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of cryptogein with changed abilities to transfer sterols and altered charge distribution on extracellular alkalinization, ROS and NO generation, lipid peroxidation and LOX gene transcription in Nicotiana tabacum.
    Ptáčková N; Klempová J; Obořil M; Nedělová S; Lochman J; Kašparovský T
    Plant Physiol Biochem; 2015 Dec; 97():82-95. PubMed ID: 26433637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in intensity and specificity of hypersensitive response induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans.
    Huitema E; Vleeshouwers VG; Cakir C; Kamoun S; Govers F
    Mol Plant Microbe Interact; 2005 Mar; 18(3):183-93. PubMed ID: 15782632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells.
    Binet MN; Humbert C; Lecourieux D; Vantard M; Pugin A
    Plant Physiol; 2001 Feb; 125(2):564-72. PubMed ID: 11161014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase activity prevents the growth of a fungal pathogen in tobacco leaves and increases upon induction of systemic acquired resistance with elicitin.
    Galiana E; Bonnet P; Conrod S; Keller H; Panabières F; Ponchet M; Poupet A; Ricci P
    Plant Physiol; 1997 Dec; 115(4):1557-67. PubMed ID: 9414563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells.
    Astier J; Besson-Bard A; Lamotte O; Bertoldo J; Bourque S; Terenzi H; Wendehenne D
    Biochem J; 2012 Oct; 447(2):249-60. PubMed ID: 22835150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.