These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22178126)

  • 1. Application of the Refined Integral Method in the mathematical modeling of drug delivery from one-layer torus-shaped devices.
    Helbling IM; Ibarra JC; Luna JA
    Int J Pharm; 2012 Feb; 423(2):240-6. PubMed ID: 22178126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of drug delivery from one-layer and two-layer torus-shaped devices with external mass transfer resistance.
    Helbling IM; Cabrera MI; Luna JA
    Eur J Pharm Sci; 2011 Oct; 44(3):288-98. PubMed ID: 21864677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of drug delivery from torus-shaped single-layer devices.
    Helbling IM; Luna JA; Cabrera MI
    J Control Release; 2011 Feb; 149(3):258-63. PubMed ID: 20971140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory.
    Berchane NS; Carson KH; Rice-Ficht AC; Andrews MJ
    Int J Pharm; 2007 Jun; 337(1-2):118-26. PubMed ID: 17289316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of dispersed-drug delivery from planar polymeric systems: optimizing analytical solutions.
    Helbling IM; Ibarra JC; Luna JA; Cabrera MI; Grau RJ
    Int J Pharm; 2010 Nov; 400(1-2):131-7. PubMed ID: 20816929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modeling on drug release from controlled drug delivery systems.
    Dash S; Murthy PN; Nath L; Chowdhury P
    Acta Pol Pharm; 2010; 67(3):217-23. PubMed ID: 20524422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two galactomannans and scleroglucan as matrices for drug delivery: preparation and release studies.
    Coviello T; Alhaique F; Dorigo A; Matricardi P; Grassi M
    Eur J Pharm Biopharm; 2007 May; 66(2):200-9. PubMed ID: 17156985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spray-dried nanofibrillar cellulose microparticles for sustained drug release.
    Kolakovic R; Laaksonen T; Peltonen L; Laukkanen A; Hirvonen J
    Int J Pharm; 2012 Jul; 430(1-2):47-55. PubMed ID: 22465549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study.
    Dahlberg C; Fureby A; Schuleit M; Dvinskikh SV; Furó I
    J Control Release; 2007 Sep; 122(2):199-205. PubMed ID: 17706829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of release kinetics of coated tablets containing constant and non-constant drug reservoirs.
    Zhou Y; Chu JS; Li JX; Wu XY
    Int J Pharm; 2010 Jan; 385(1-2):98-103. PubMed ID: 19879936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on pH-sensitive micellar structures for sustained drug delivery: experiments and computer simulations.
    Guo XD; Zhang LJ; Wu ZM; Qian Y
    J Control Release; 2011 Nov; 152 Suppl 1():e26-8. PubMed ID: 22195898
    [No Abstract]   [Full Text] [Related]  

  • 12. Gastric floating matrix tablets: design and optimization using combination of polymers.
    Prajapati ST; Patel LD; Patel DM
    Acta Pharm; 2008 Jun; 58(2):221-9. PubMed ID: 18515232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization.
    Stanković M; Frijlink HW; Hinrichs WL
    Drug Discov Today; 2015 Jul; 20(7):812-23. PubMed ID: 25660507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges of therapeutic delivery using conducting polymers.
    Poole-Warren L; Goding J
    Ther Deliv; 2012 Apr; 3(4):421-7. PubMed ID: 22834074
    [No Abstract]   [Full Text] [Related]  

  • 15. Controlled heparin release from electrospun gelatin fibers.
    Wang H; Feng Y; Zhao H; Lu J; Guo J; Behl M; Lendlein A
    J Control Release; 2011 Nov; 152 Suppl 1():e28-9. PubMed ID: 22195905
    [No Abstract]   [Full Text] [Related]  

  • 16. Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins.
    Peng K; Tomatsu I; Kros A
    J Control Release; 2011 Nov; 152 Suppl 1():e72-4. PubMed ID: 22195937
    [No Abstract]   [Full Text] [Related]  

  • 17. Controlled release of hydrogel modified textile products.
    Hu J
    J Control Release; 2011 Nov; 152 Suppl 1():e31-3. PubMed ID: 22195907
    [No Abstract]   [Full Text] [Related]  

  • 18. Controlled release implants based on cast lipid blends.
    Kreye F; Siepmann F; Zimmer A; Willart JF; Descamps M; Siepmann J
    Eur J Pharm Sci; 2011 May; 43(1-2):78-83. PubMed ID: 21463679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms.
    Siepmann J; Siepmann F; Florence AT
    Int J Pharm; 2006 May; 314(2):101-19. PubMed ID: 16647231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pharma-robust design method to investigate the effect of PEG and PEO on matrix tablets.
    Park JS; Shim JY; Nguyen KV; Park JS; Shin S; Choi YW; Lee J; Yoon JH; Jeong SH
    Int J Pharm; 2010 Jun; 393(1-2):79-87. PubMed ID: 20399261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.