These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. Chin KH; Lee YC; Tu ZL; Chen CH; Tseng YH; Yang JM; Ryan RP; McCarthy Y; Dow JM; Wang AH; Chou SH J Mol Biol; 2010 Feb; 396(3):646-62. PubMed ID: 20004667 [TBL] [Abstract][Full Text] [Related]
23. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. Kuchma SL; Delalez NJ; Filkins LM; Snavely EA; Armitage JP; O'Toole GA J Bacteriol; 2015 Feb; 197(3):420-30. PubMed ID: 25349157 [TBL] [Abstract][Full Text] [Related]
24. PilZ domain is part of the bacterial c-di-GMP binding protein. Amikam D; Galperin MY Bioinformatics; 2006 Jan; 22(1):3-6. PubMed ID: 16249258 [TBL] [Abstract][Full Text] [Related]
25. Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Liu N; Xu Y; Hossain S; Huang N; Coursolle D; Gralnick JA; Boon EM Biochemistry; 2012 Mar; 51(10):2087-99. PubMed ID: 22360279 [TBL] [Abstract][Full Text] [Related]
26. A cyclic di-GMP-binding adaptor protein interacts with a chemotaxis methyltransferase to control flagellar motor switching. Xu L; Xin L; Zeng Y; Yam JK; Ding Y; Venkataramani P; Cheang QW; Yang X; Tang X; Zhang LH; Chiam KH; Yang L; Liang ZX Sci Signal; 2016 Oct; 9(450):ra102. PubMed ID: 27811183 [TBL] [Abstract][Full Text] [Related]
27. Genetic Tools to Study c-di-GMP-Dependent Signaling in Pseudomonas aeruginosa. Leoni L; Pawar SV; Rampioni G Methods Mol Biol; 2017; 1657():471-480. PubMed ID: 28889314 [TBL] [Abstract][Full Text] [Related]
28. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Fazli M; O'Connell A; Nilsson M; Niehaus K; Dow JM; Givskov M; Ryan RP; Tolker-Nielsen T Mol Microbiol; 2011 Oct; 82(2):327-41. PubMed ID: 21883527 [TBL] [Abstract][Full Text] [Related]
29. C-di-GMP: the dawning of a novel bacterial signalling system. Römling U; Gomelsky M; Galperin MY Mol Microbiol; 2005 Aug; 57(3):629-39. PubMed ID: 16045609 [TBL] [Abstract][Full Text] [Related]
30. A PilZ domain protein for chemotaxis adds another layer to c-di-GMP-mediated regulation of flagellar motility. Orr MW; Lee VT Sci Signal; 2016 Oct; 9(450):fs16. PubMed ID: 27811181 [TBL] [Abstract][Full Text] [Related]
31. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Dow JM; Fouhy Y; Lucey JF; Ryan RP Mol Plant Microbe Interact; 2006 Dec; 19(12):1378-84. PubMed ID: 17153922 [TBL] [Abstract][Full Text] [Related]
32. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa. Whitney JC; Whitfield GB; Marmont LS; Yip P; Neculai AM; Lobsanov YD; Robinson H; Ohman DE; Howell PL J Biol Chem; 2015 May; 290(20):12451-62. PubMed ID: 25817996 [TBL] [Abstract][Full Text] [Related]
33. [Identification of cyclic di-GMP protein receptors: high-throughput screening strategies and experimental verification]. Cheng S; Wang F; Qian W Sheng Wu Gong Cheng Xue Bao; 2017 Sep; 33(9):1376-1389. PubMed ID: 28956389 [TBL] [Abstract][Full Text] [Related]
34. Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by Pilz domain proteins. Ko J; Ryu KS; Kim H; Shin JS; Lee JO; Cheong C; Choi BS J Mol Biol; 2010 Apr; 398(1):97-110. PubMed ID: 20226196 [TBL] [Abstract][Full Text] [Related]
35. Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein. Yan XF; Xin L; Yen JT; Zeng Y; Jin S; Cheang QW; Fong RACY; Chiam KH; Liang ZX; Gao YG J Biol Chem; 2018 Jan; 293(1):100-111. PubMed ID: 29146598 [TBL] [Abstract][Full Text] [Related]
36. When the PilZ don't work: effectors for cyclic di-GMP action in bacteria. Ryan RP; Tolker-Nielsen T; Dow JM Trends Microbiol; 2012 May; 20(5):235-42. PubMed ID: 22444828 [TBL] [Abstract][Full Text] [Related]
37. Novel genetic tools to tackle c-di-GMP-dependent signalling in Pseudomonas aeruginosa. Pawar SV; Messina M; Rinaldo S; Cutruzzolà F; Kaever V; Rampioni G; Leoni L J Appl Microbiol; 2016 Jan; 120(1):205-17. PubMed ID: 26497534 [TBL] [Abstract][Full Text] [Related]
38. Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate. Cooley RB; Smith TJ; Leung W; Tierney V; Borlee BR; O'Toole GA; Sondermann H J Bacteriol; 2016 Jan; 198(1):66-76. PubMed ID: 26100041 [TBL] [Abstract][Full Text] [Related]
39. Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Simm R; Morr M; Remminghorst U; Andersson M; Römling U Anal Biochem; 2009 Mar; 386(1):53-8. PubMed ID: 19135022 [TBL] [Abstract][Full Text] [Related]
40. Structural basis for the regulation of chemotaxis by MapZ in the presence of c-di-GMP. Zhu Y; Yuan Z; Gu L Acta Crystallogr D Struct Biol; 2017 Aug; 73(Pt 8):683-691. PubMed ID: 28777083 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]