BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22178969)

  • 1. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.
    Lee YH; Kingston AW; Helmann JD
    J Bacteriol; 2012 Mar; 194(5):993-1001. PubMed ID: 22178969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the primary sigma factor σA and termination factor rho that reduce susceptibility to cell wall antibiotics.
    Lee YH; Helmann JD
    J Bacteriol; 2014 Nov; 196(21):3700-11. PubMed ID: 25112476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli.
    Butcher BG; Helmann JD
    Mol Microbiol; 2006 May; 60(3):765-82. PubMed ID: 16629676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mutation of the RNA polymerase β' subunit (rpoC) confers cephalosporin resistance in Bacillus subtilis.
    Lee YH; Nam KH; Helmann JD
    Antimicrob Agents Chemother; 2013 Jan; 57(1):56-65. PubMed ID: 23070162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.
    Helmann JD
    Curr Opin Microbiol; 2016 Apr; 30():122-132. PubMed ID: 26901131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons.
    Cao M; Wang T; Ye R; Helmann JD
    Mol Microbiol; 2002 Sep; 45(5):1267-76. PubMed ID: 12207695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and phenotypic characterization of a Bacillus subtilis strain without extracytoplasmic function σ factors.
    Luo Y; Asai K; Sadaie Y; Helmann JD
    J Bacteriol; 2010 Nov; 192(21):5736-45. PubMed ID: 20817771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis.
    Belitsky BR; Sonenshein AL
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10290-5. PubMed ID: 10468601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis.
    Kingston AW; Liao X; Helmann JD
    Mol Microbiol; 2013 Nov; 90(3):502-18. PubMed ID: 23980836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus subtilis σ(V) confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids.
    Guariglia-Oropeza V; Helmann JD
    J Bacteriol; 2011 Nov; 193(22):6223-32. PubMed ID: 21926231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches.
    Cao M; Kobel PA; Morshedi MM; Wu MF; Paddon C; Helmann JD
    J Mol Biol; 2002 Feb; 316(3):443-57. PubMed ID: 11866510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors.
    Mascher T; Hachmann AB; Helmann JD
    J Bacteriol; 2007 Oct; 189(19):6919-27. PubMed ID: 17675383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC.
    Commichau FM; Herzberg C; Tripal P; Valerius O; Stülke J
    Mol Microbiol; 2007 Aug; 65(3):642-54. PubMed ID: 17608797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional dissection of a trigger enzyme: mutations of the bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties.
    Gunka K; Newman JA; Commichau FM; Herzberg C; Rodrigues C; Hewitt L; Lewis RJ; Stülke J
    J Mol Biol; 2010 Jul; 400(4):815-27. PubMed ID: 20630473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses.
    Eiamphungporn W; Helmann JD
    Mol Microbiol; 2008 Feb; 67(4):830-48. PubMed ID: 18179421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis.
    Luo Y; Helmann JD
    Mol Microbiol; 2012 Feb; 83(3):623-39. PubMed ID: 22211522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system.
    Commichau FM; Gunka K; Landmann JJ; Stülke J
    J Bacteriol; 2008 May; 190(10):3557-64. PubMed ID: 18326565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W.
    Huang X; Gaballa A; Cao M; Helmann JD
    Mol Microbiol; 1999 Jan; 31(1):361-71. PubMed ID: 9987136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes.
    Belitsky BR; Sonenshein AL
    J Bacteriol; 1998 Dec; 180(23):6298-305. PubMed ID: 9829940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-frequency mutation in Bacillus subtilis: requirements for the decryptification of the gudB glutamate dehydrogenase gene.
    Gunka K; Tholen S; Gerwig J; Herzberg C; Stülke J; Commichau FM
    J Bacteriol; 2012 Mar; 194(5):1036-44. PubMed ID: 22178973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.