These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22178994)

  • 1. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing.
    Reumers J; De Rijk P; Zhao H; Liekens A; Smeets D; Cleary J; Van Loo P; Van Den Bossche M; Catthoor K; Sabbe B; Despierre E; Vergote I; Hilbush B; Lambrechts D; Del-Favero J
    Nat Biotechnol; 2011 Dec; 30(1):61-8. PubMed ID: 22178994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the variant calling algorithm, ADIScan, and its use to estimate discordant sequences between monozygotic twins.
    Cho Y; Lee S; Hong JH; Kim BJ; Hong WY; Jung J; Lee HB; Sung J; Kim HN; Kim HL; Jung J
    Nucleic Acids Res; 2018 Sep; 46(15):e92. PubMed ID: 29873758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing.
    Edge P; Bansal V
    Nat Commun; 2019 Oct; 10(1):4660. PubMed ID: 31604920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revising a personal genome by comparing and combining data from two different sequencing platforms.
    Kim D; Kim WY; Lee SY; Lee SY; Yun H; Shin SY; Lee J; Hong Y; Won Y; Kim SJ; Lee YS; Ahn SM
    PLoS One; 2013; 8(4):e60585. PubMed ID: 23593254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical modeling for sensitive detection of low-frequency single nucleotide variants.
    Hao Y; Zhang P; Xuei X; Nakshatri H; Edenberg HJ; Li L; Liu Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):514. PubMed ID: 27556804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.
    Kim JS; Senol Cali D; Xin H; Lee D; Ghose S; Alser M; Hassan H; Ergin O; Alkan C; Mutlu O
    BMC Genomics; 2018 May; 19(Suppl 2):89. PubMed ID: 29764378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs.
    Ye K; Beekman M; Lameijer EW; Zhang Y; Moed MH; van den Akker EB; Deelen J; Houwing-Duistermaat JJ; Kremer D; Anvar SY; Laros JF; Jones D; Raine K; Blackburne B; Potluri S; Long Q; Guryev V; van der Breggen R; Westendorp RG; 't Hoen PA; den Dunnen J; van Ommen GJ; Willemsen G; Pitts SJ; Cox DR; Ning Z; Boomsma DI; Slagboom PE
    Twin Res Hum Genet; 2013 Dec; 16(6):1026-32. PubMed ID: 24182360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise detection of de novo single nucleotide variants in human genomes.
    Gómez-Romero L; Palacios-Flores K; Reyes J; García D; Boege M; Dávila G; Flores M; Schatz MC; Palacios R
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5516-5521. PubMed ID: 29735690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From next-generation sequencing alignments to accurate comparison and validation of single-nucleotide variants: the pibase software.
    Forster M; Forster P; Elsharawy A; Hemmrich G; Kreck B; Wittig M; Thomsen I; Stade B; Barann M; Ellinghaus D; Petersen BS; May S; Melum E; Schilhabel MB; Keller A; Schreiber S; Rosenstiel P; Franke A
    Nucleic Acids Res; 2013 Jan; 41(1):e16. PubMed ID: 22965131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quality control metrics improve repeatability and reproducibility of single-nucleotide variants derived from whole-genome sequencing.
    Zhang W; Soika V; Meehan J; Su Z; Ge W; Ng HW; Perkins R; Simonyan V; Tong W; Hong H
    Pharmacogenomics J; 2015 Aug; 15(4):298-309. PubMed ID: 25384574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome analyses reveal no pathogenetic single nucleotide or structural differences between monozygotic twins discordant for amyotrophic lateral sclerosis.
    Meltz Steinberg K; Nicholas TJ; Koboldt DC; Yu B; Mardis E; Pamphlett R
    Amyotroph Lateral Scler Frontotemporal Degener; 2015; 16(5-6):385-92. PubMed ID: 25960086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.
    Eberle MA; Fritzilas E; Krusche P; Källberg M; Moore BL; Bekritsky MA; Iqbal Z; Chuang HY; Humphray SJ; Halpern AL; Kruglyak S; Margulies EH; McVean G; Bentley DR
    Genome Res; 2017 Jan; 27(1):157-164. PubMed ID: 27903644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical strategy for monozygotic twin discrimination by single-nucleotide variants.
    Sun W; Wang Z; Wen S; Huang A; Li H; Jiang L; Feng Q; Fan D; Tian Q; Han D; Liu X
    Int J Legal Med; 2024 May; 138(3):767-779. PubMed ID: 38197923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STIC: Predicting Single Nucleotide Variants and Tumor Purity in Cancer Genome.
    Yuan X; Ma C; Zhao H; Yang L; Wang S; Xi J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2692-2701. PubMed ID: 32086221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and cost effective population resequencing by pooling and in-solution hybridization.
    Bansal V; Tewhey R; Leproust EM; Schork NJ
    PLoS One; 2011 Mar; 6(3):e18353. PubMed ID: 21479135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete genome of an individual by massively parallel DNA sequencing.
    Wheeler DA; Srinivasan M; Egholm M; Shen Y; Chen L; McGuire A; He W; Chen YJ; Makhijani V; Roth GT; Gomes X; Tartaro K; Niazi F; Turcotte CL; Irzyk GP; Lupski JR; Chinault C; Song XZ; Liu Y; Yuan Y; Nazareth L; Qin X; Muzny DM; Margulies M; Weinstock GM; Gibbs RA; Rothberg JM
    Nature; 2008 Apr; 452(7189):872-6. PubMed ID: 18421352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-Generation Pedigree of Monozygotic Female Twins Reveals Genetic Factors in Twinning Process by Whole-Genome Sequencing.
    Liu S; Hong Y; Cui K; Guan J; Han L; Chen W; Xu Z; Gong K; Ou Y; Zeng C; Li S; Zhang D; Hu D
    Twin Res Hum Genet; 2018 Oct; 21(5):361-368. PubMed ID: 30064533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis.
    Baranzini SE; Mudge J; van Velkinburgh JC; Khankhanian P; Khrebtukova I; Miller NA; Zhang L; Farmer AD; Bell CJ; Kim RW; May GD; Woodward JE; Caillier SJ; McElroy JP; Gomez R; Pando MJ; Clendenen LE; Ganusova EE; Schilkey FD; Ramaraj T; Khan OA; Huntley JJ; Luo S; Kwok PY; Wu TD; Schroth GP; Oksenberg JR; Hauser SL; Kingsmore SF
    Nature; 2010 Apr; 464(7293):1351-6. PubMed ID: 20428171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the perpetrator among identical twins using next-generation sequencing technology: A case report.
    Yuan L; Chen X; Liu Z; Liu Q; Song A; Bao G; Wei G; Zhang S; Lu J; Wu Y
    Forensic Sci Int Genet; 2020 Jan; 44():102167. PubMed ID: 31605960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the genome on the epigenome is manifested in DNA methylation patterns of imprinted regions in monozygotic and dizygotic twins.
    Coolen MW; Statham AL; Qu W; Campbell MJ; Henders AK; Montgomery GW; Martin NG; Clark SJ
    PLoS One; 2011; 6(10):e25590. PubMed ID: 21991322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.