These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22179010)
1. Functional insights into the activation mechanism of Ste20-related kinases. Gagnon KB; Rios K; Delpire E Cell Physiol Biochem; 2011; 28(6):1219-30. PubMed ID: 22179010 [TBL] [Abstract][Full Text] [Related]
2. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters. Ponce-Coria J; Markadieu N; Austin TM; Flammang L; Rios K; Welling PA; Delpire E J Biol Chem; 2014 Jun; 289(25):17680-8. PubMed ID: 24811174 [TBL] [Abstract][Full Text] [Related]
3. Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Gagnon KB; England R; Delpire E Am J Physiol Cell Physiol; 2006 Jan; 290(1):C134-42. PubMed ID: 15930150 [TBL] [Abstract][Full Text] [Related]
4. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). Piechotta K; Lu J; Delpire E J Biol Chem; 2002 Dec; 277(52):50812-9. PubMed ID: 12386165 [TBL] [Abstract][Full Text] [Related]
5. Calcium-binding protein 39 facilitates molecular interaction between Ste20p proline alanine-rich kinase and oxidative stress response 1 monomers. Ponce-Coria J; Gagnon KB; Delpire E Am J Physiol Cell Physiol; 2012 Dec; 303(11):C1198-205. PubMed ID: 23034389 [TBL] [Abstract][Full Text] [Related]
6. Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter. Gagnon KB; England R; Delpire E Mol Cell Biol; 2006 Jan; 26(2):689-98. PubMed ID: 16382158 [TBL] [Abstract][Full Text] [Related]
7. Multiple pathways for protein phosphatase 1 (PP1) regulation of Na-K-2Cl cotransporter (NKCC1) function: the N-terminal tail of the Na-K-2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) AND PP1. Gagnon KB; Delpire E J Biol Chem; 2010 May; 285(19):14115-21. PubMed ID: 20223824 [TBL] [Abstract][Full Text] [Related]
8. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. Moriguchi T; Urushiyama S; Hisamoto N; Iemura S; Uchida S; Natsume T; Matsumoto K; Shibuya H J Biol Chem; 2005 Dec; 280(52):42685-93. PubMed ID: 16263722 [TBL] [Abstract][Full Text] [Related]
10. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Vitari AC; Thastrup J; Rafiqi FH; Deak M; Morrice NA; Karlsson HK; Alessi DR Biochem J; 2006 Jul; 397(1):223-31. PubMed ID: 16669787 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl- cotransporter in the nervous system: evidence for a scaffolding role of the kinase. Piechotta K; Garbarini N; England R; Delpire E J Biol Chem; 2003 Dec; 278(52):52848-56. PubMed ID: 14563843 [TBL] [Abstract][Full Text] [Related]
12. Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Gagnon KB; England R; Diehl L; Delpire E Am J Physiol Cell Physiol; 2007 May; 292(5):C1809-15. PubMed ID: 17267545 [TBL] [Abstract][Full Text] [Related]
13. The Ste20 kinases Ste20-related proline-alanine-rich kinase and oxidative-stress response 1 regulate NKCC1 function in sensory neurons. Geng Y; Hoke A; Delpire E J Biol Chem; 2009 May; 284(21):14020-8. PubMed ID: 19307180 [TBL] [Abstract][Full Text] [Related]
14. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. Grimm PR; Taneja TK; Liu J; Coleman R; Chen YY; Delpire E; Wade JB; Welling PA J Biol Chem; 2012 Nov; 287(45):37673-90. PubMed ID: 22977235 [TBL] [Abstract][Full Text] [Related]
15. On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+-K+-2Cl- cotransport activity. Gagnon KB; Delpire E Am J Physiol Cell Physiol; 2010 Sep; 299(3):C614-20. PubMed ID: 20463172 [TBL] [Abstract][Full Text] [Related]
16. A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter. Gagnon KB; England R; Delpire E Cell Physiol Biochem; 2007; 20(1-4):131-42. PubMed ID: 17595523 [TBL] [Abstract][Full Text] [Related]
17. Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals. Sengupta S; Lorente-Rodríguez A; Earnest S; Stippec S; Guo X; Trudgian DC; Mirzaei H; Cobb MH Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18826-31. PubMed ID: 24191005 [TBL] [Abstract][Full Text] [Related]
18. Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters. Mercier-Zuber A; O'Shaughnessy KM Curr Opin Nephrol Hypertens; 2011 Sep; 20(5):534-40. PubMed ID: 21610494 [TBL] [Abstract][Full Text] [Related]
19. Interactions with WNK (with no lysine) family members regulate oxidative stress response 1 and ion co-transporter activity. Sengupta S; Tu SW; Wedin K; Earnest S; Stippec S; Luby-Phelps K; Cobb MH J Biol Chem; 2012 Nov; 287(45):37868-79. PubMed ID: 22989884 [TBL] [Abstract][Full Text] [Related]
20. Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Lin SH; Yu IS; Jiang ST; Lin SW; Chu P; Chen A; Sytwu HK; Sohara E; Uchida S; Sasaki S; Yang SS Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17538-43. PubMed ID: 21972418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]