These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22179144)

  • 1. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes.
    Misra CS; Appukuttan D; Kantamreddi VS; Rao AS; Apte SK
    Bioeng Bugs; 2012 Jan; 3(1):44-8. PubMed ID: 22179144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhoN-expressing, lyophilized, recombinant Deinococcus radiodurans cells for uranium bioprecipitation.
    Appukuttan D; Seetharam C; Padma N; Rao AS; Apte SK
    J Biotechnol; 2011 Jul; 154(4):285-90. PubMed ID: 21616102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste.
    Appukuttan D; Rao AS; Apte SK
    Appl Environ Microbiol; 2006 Dec; 72(12):7873-8. PubMed ID: 17056698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium.
    Misra CS; Mukhopadhyaya R; Apte SK
    J Biotechnol; 2014 Nov; 189():88-93. PubMed ID: 25261614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference.
    Xu R; Wu K; Han H; Ling Z; Chen Z; Liu P; Xiong J; Tian F; Zafar Y; Malik K; Li X
    Chemosphere; 2018 Nov; 211():1156-1165. PubMed ID: 30223331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans.
    Kulkarni S; Ballal A; Apte SK
    J Hazard Mater; 2013 Nov; 262():853-61. PubMed ID: 24140537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm.
    Manobala T; Shukla SK; Rao TS; Kumar MD
    J Biosci; 2019 Oct; 44(5):. PubMed ID: 31719231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans.
    Misra CS; Sounderajan S; Apte SK
    J Hazard Mater; 2021 Oct; 419():126477. PubMed ID: 34323731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments.
    Brim H; Venkateswaran A; Kostandarithes HM; Fredrickson JK; Daly MJ
    Appl Environ Microbiol; 2003 Aug; 69(8):4575-82. PubMed ID: 12902245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation.
    Kulkarni S; Misra CS; Gupta A; Ballal A; Apte SK
    Appl Environ Microbiol; 2016 Aug; 82(16):4965-74. PubMed ID: 27287317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to the remediation of heavy metal liquid wastes via off-gases produced by Klebsiella pneumoniae M426.
    Essa AM; Creamer NJ; Brown NL; Macaskie LE
    Biotechnol Bioeng; 2006 Nov; 95(4):574-83. PubMed ID: 16958139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application Progress of
    Li S; Zhu Q; Luo J; Shu Y; Guo K; Xie J; Xiao F; He S
    Indian J Microbiol; 2021 Dec; 61(4):417-426. PubMed ID: 34744197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of humate on biological treatment of wastewater containing heavy metals.
    Lipczynska-Kochany E; Kochany J
    Chemosphere; 2009 Sep; 77(2):279-84. PubMed ID: 19679330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metals sorption from aqueous solutions by Kluyveromyces marxianus: process optimization, equilibrium modeling and chemical characterization.
    Pal R; Tewari S; Rai JP
    Biotechnol J; 2009 Oct; 4(10):1471-8. PubMed ID: 19557798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of biosorption of heavy metals using different types of algae.
    Romera E; González F; Ballester A; Blázquez ML; Muñoz JA
    Bioresour Technol; 2007 Dec; 98(17):3344-53. PubMed ID: 17624771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Uptake of nickel from industrial wastewater by genetically engineered Escherichia coli JM109].
    Deng X; Li QB; Lu YH; Sun DH; Huang YL
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):343-8. PubMed ID: 15969019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri.
    Liao CS; Chen LC; Chen BS; Lin SH
    Chemosphere; 2010 Jan; 78(3):342-6. PubMed ID: 19959202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments.
    Lange CC; Wackett LP; Minton KW; Daly MJ
    Nat Biotechnol; 1998 Oct; 16(10):929-33. PubMed ID: 9788348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.