These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 2217915)

  • 41. The influence of chemical structure on the extent and sites of carcinogenesis for 522 rodent carcinogens and 55 different human carcinogen exposures.
    Ashby J; Paton D
    Mutat Res; 1993 Mar; 286(1):3-74. PubMed ID: 7678908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How many high production chemicals are rodent carcinogens? Why should we care? What do we need to do about it?
    Johnson FM
    Mutat Res; 2003 Jun; 543(3):201-15. PubMed ID: 12787813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The fifth plot of the Carcinogenic Potency Database: results of animal bioassays published in the general literature through 1988 and by the National Toxicology Program through 1989.
    Gold LS; Manley NB; Slone TH; Garfinkel GB; Rohrbach L; Ames BN
    Environ Health Perspect; 1993 Apr; 100():65-168. PubMed ID: 8354183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NTP toxicology and carcinogenesis studies of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) in female Harlan Sprague-Dawley rats (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2006 Jan; (520):4-246. PubMed ID: 16628245
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CPDB: Carcinogenic Potency Database.
    Fitzpatrick RB
    Med Ref Serv Q; 2008; 27(3):303-11. PubMed ID: 19042710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment.
    Benigni R; Passerini L
    Mutat Res; 2002 Jul; 511(3):191-206. PubMed ID: 12088717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thresholds for carcinogens.
    Calabrese EJ; Priest ND; Kozumbo WJ
    Chem Biol Interact; 2021 May; 341():109464. PubMed ID: 33823170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Is current risk assessment of non-genotoxic carcinogens protective?
    Braakhuis HM; Slob W; Olthof ED; Wolterink G; Zwart EP; Gremmer ER; Rorije E; van Benthem J; Woutersen R; van der Laan JW; Luijten M
    Crit Rev Toxicol; 2018 Jul; 48(6):500-511. PubMed ID: 29745287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of the uses of rats and mice for assessing carcinogenic risk from chemicals in humans.
    Ward JM
    Asian Pac J Cancer Prev; 2010; 11(1):18. PubMed ID: 20593921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity.
    Kirkland D; Aardema M; Henderson L; Müller L
    Mutat Res; 2005 Jul; 584(1-2):1-256. PubMed ID: 15979392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mathematical models in quantitative assessment of carcinogenic risk.
    Park CN
    Regul Toxicol Pharmacol; 1989 Jun; 9(3):236-43. PubMed ID: 2756171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carcinogenic chemical-response "fingerprint" for male F344 rats exposed to a series of 195 chemicals: implications for predicting carcinogens with transgenic models.
    Johnson FM
    Environ Mol Mutagen; 1999; 34(4):234-45. PubMed ID: 10618171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An enhanced thirteen-week bioassay as an alternative for screening for carcinogenesis factors.
    Cohen SM
    Asian Pac J Cancer Prev; 2010; 11(1):15-7. PubMed ID: 20593920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Risk-based principles and incompleteness theorems for linear dose-response extrapolation for carcinogenic chemicals.
    Li Z
    Chemosphere; 2020 May; 247():125934. PubMed ID: 32079056
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds.
    Helguera AM; González MP; D S Cordeiro MN; Pérez MA
    Toxicol Appl Pharmacol; 2007 Jun; 221(2):189-202. PubMed ID: 17477948
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An overview of the report: correlation between carcinogenic potency and the maximum tolerated dose: implications for risk assessment.
    Krewski D; Gaylor DW; Soms AP; Szyszkowicz M
    Risk Anal; 1993 Aug; 13(4):383-98. PubMed ID: 8234946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hazard assessment of chemical carcinogens: the impact of hormesis.
    Teeguarden JG; Dragan Y; Pitot HC
    J Appl Toxicol; 2000; 20(2):113-20. PubMed ID: 10715608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The pH 6.7 Syrian hamster embryo cell transformation assay for assessing the carcinogenic potential of chemicals.
    LeBoeuf RA; Kerckaert GA; Aardema MJ; Gibson DP; Brauninger R; Isfort RJ
    Mutat Res; 1996 Sep; 356(1):85-127. PubMed ID: 8841476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Are genotoxic carcinogens more potent than nongenotoxic carcinogens?
    Parodi S; Malacarne D; Romano P; Taningher M
    Environ Health Perspect; 1991 Nov; 95():199-204. PubMed ID: 1821372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.