BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22179235)

  • 1. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS.
    Tsuji H; Moriyama K; Nomoto K; Akaza H
    Appl Environ Microbiol; 2012 Feb; 78(4):1228-36. PubMed ID: 22179235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of two novel reductases involved in equol biosynthesis in Lactococcus strain 20-92.
    Shimada Y; Takahashi M; Miyazawa N; Ohtani T; Abiru Y; Uchiyama S; Hishigaki H
    J Mol Microbiol Biotechnol; 2011; 21(3-4):160-72. PubMed ID: 22286043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens.
    Schröder C; Matthies A; Engst W; Blaut M; Braune A
    Appl Environ Microbiol; 2013 Jun; 79(11):3494-502. PubMed ID: 23542626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92.
    Shimada Y; Yasuda S; Takahashi M; Hayashi T; Miyazawa N; Sato I; Abiru Y; Uchiyama S; Hishigaki H
    Appl Environ Microbiol; 2010 Sep; 76(17):5892-901. PubMed ID: 20639368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counts of Slackia sp. strain NATTS in intestinal flora are correlated to serum concentrations of equol both in prostate cancer cases and controls in Japanese men.
    Sugiyama Y; Nagata Y; Fukuta F; Takayanagi A; Masumori N; Tsukamoto T; Akasaka H; Ohnishi H; Saito S; Miura T; Moriyama K; Tsuji H; Akaza H; Mori M
    Asian Pac J Cancer Prev; 2014; 15(6):2693-7. PubMed ID: 24761887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol from daidzein in Lactococcus sp. strain 20-92.
    Shimada Y; Takahashi M; Miyazawa N; Abiru Y; Uchiyama S; Hishigaki H
    Appl Environ Microbiol; 2012 Jul; 78(14):4902-7. PubMed ID: 22582059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones.
    Kawada Y; Goshima T; Sawamura R; Yokoyama SI; Yanase E; Niwa T; Ebihara A; Inagaki M; Yamaguchi K; Kuwata K; Kato Y; Sakurada O; Suzuki T
    J Biosci Bioeng; 2018 Sep; 126(3):301-309. PubMed ID: 29699942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P212A Mutant of Dihydrodaidzein Reductase Enhances (S)-Equol Production and Enantioselectivity in a Recombinant Escherichia coli Whole-Cell Reaction System.
    Lee PG; Kim J; Kim EJ; Jung E; Pandey BP; Kim BG
    Appl Environ Microbiol; 2016 Jan; 82(7):1992-2002. PubMed ID: 26801575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous expression of equol biosynthesis genes from Adlercreutzia equolifaciens.
    Vázquez L; Flórez AB; Rodríguez J; Mayo B
    FEMS Microbiol Lett; 2021 Jul; 368(13):. PubMed ID: 34173644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of serum levels and dietary intake of isoflavone, and the novel bacterium Slackia sp. strain NATTS with the risk of prostate cancer: a case-control study among Japanese men.
    Nagata Y; Sugiyama Y; Fukuta F; Takayanagi A; Masumori N; Tsukamoto T; Akasaka H; Ohnishi H; Saitoh S; Miura T; Moriyama K; Tsuji H; Akaza H; Mori M
    Int Urol Nephrol; 2016 Sep; 48(9):1453-60. PubMed ID: 27262851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS.
    Tsuji H; Moriyama K; Nomoto K; Miyanaga N; Akaza H
    Arch Microbiol; 2010 Apr; 192(4):279-87. PubMed ID: 20237913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of S-equol from daidzein is associated with a cluster of three genes in Eggerthella sp. YY7918.
    Kawada Y; Yokoyama S; Yanase E; Niwa T; Suzuki T
    Biosci Microbiota Food Health; 2016; 35(3):113-21. PubMed ID: 27508112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of (-)-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion.
    Lee PG; Kim J; Kim EJ; Lee SH; Choi KY; Kazlauskas RJ; Kim BG
    ACS Chem Biol; 2017 Nov; 12(11):2883-2890. PubMed ID: 28985044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereospecific biotransformation of dihydrodaidzein into (3S)-equol by the human intestinal bacterium Eggerthella strain Julong 732.
    Kim M; Kim SI; Han J; Wang XL; Song DG; Kim SU
    Appl Environ Microbiol; 2009 May; 75(10):3062-8. PubMed ID: 19304836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion.
    Matthies A; Blaut M; Braune A
    Appl Environ Microbiol; 2009 Mar; 75(6):1740-4. PubMed ID: 19139227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of recombinant lactic acid bacteria and bifidobacteria able to enrich soy beverage in dihydrodaidzein and dihydrogenistein.
    Peirotén Á; Gaya P; Mª Landete J
    Food Res Int; 2020 Aug; 134():109257. PubMed ID: 32517924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and identification of a human intestinal bacterium capable of daidzein conversion.
    Guo Y; Zhao L; Fang X; Zhong Q; Liang H; Liang W; Wang L
    FEMS Microbiol Lett; 2021 May; 368(8):. PubMed ID: 33930123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine.
    Minamida K; Tanaka M; Abe A; Sone T; Tomita F; Hara H; Asano K
    J Biosci Bioeng; 2006 Sep; 102(3):247-50. PubMed ID: 17046543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol.
    Jin JS; Kitahara M; Sakamoto M; Hattori M; Benno Y
    Int J Syst Evol Microbiol; 2010 Aug; 60(Pt 8):1721-1724. PubMed ID: 19734283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of soy isoflavones by use of Escherichia coli whole-cell biocatalyst expressing isoflavone reductase under aerobic conditions.
    Gao YN; Hao QH; Zhang HL; Zhou B; Yu XM; Wang XL
    Lett Appl Microbiol; 2016 Aug; 63(2):111-6. PubMed ID: 27227796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.