BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 22179261)

  • 1. Mechanism of C-terminal intein cleavage in protein splicing from QM/MM molecular dynamics simulations.
    Mujika JI; Lopez X; Mulholland AJ
    Org Biomol Chem; 2012 Feb; 10(6):1207-18. PubMed ID: 22179261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling protein splicing: reaction pathway for C-terminal splice and intein scission.
    Mujika JI; Lopez X; Mulholland AJ
    J Phys Chem B; 2009 Apr; 113(16):5607-16. PubMed ID: 19326906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Catalytic Role of B-Block Histidine in the N-S Acyl Shift Step of Protein Splicing.
    Mujika JI; Lopez X
    J Phys Chem B; 2017 Aug; 121(33):7786-7796. PubMed ID: 28737941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing.
    Sun P; Ye S; Ferrandon S; Evans TC; Xu MQ; Rao Z
    J Mol Biol; 2005 Nov; 353(5):1093-105. PubMed ID: 16219320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein splicing in the absence of an intein penultimate histidine.
    Chen L; Benner J; Perler FB
    J Biol Chem; 2000 Jul; 275(27):20431-5. PubMed ID: 10770923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of protein splicing, cleavage, and self-association reactions mediated by the naturally split Ssp DnaE intein.
    Nichols NM; Evans TC
    Biochemistry; 2004 Aug; 43(31):10265-76. PubMed ID: 15287754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for intein C-terminal cleavage: a proposal from quantum mechanical calculations.
    Shemella P; Pereira B; Zhang Y; Van Roey P; Belfort G; Garde S; Nayak SK
    Biophys J; 2007 Feb; 92(3):847-53. PubMed ID: 17085503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein.
    O'Brien KM; Schufreider AK; McGill MA; O'Brien KM; Reitter JN; Mills KV
    Biochem Biophys Res Commun; 2010 Dec; 403(3-4):457-61. PubMed ID: 21094142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing.
    Ding Y; Xu MQ; Ghosh I; Chen X; Ferrandon S; Lesage G; Rao Z
    J Biol Chem; 2003 Oct; 278(40):39133-42. PubMed ID: 12878593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Thermococcus kodakaraensis Tko CDC21-1 intein activates its N-terminal splice junction in the absence of a conserved histidine by a compensatory mechanism.
    Tori K; Cheriyan M; Pedamallu CS; Contreras MA; Perler FB
    Biochemistry; 2012 Mar; 51(12):2496-505. PubMed ID: 22380677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism.
    Du Z; Shemella PT; Liu Y; McCallum SA; Pereira B; Nayak SK; Belfort G; Belfort M; Wang C
    J Am Chem Soc; 2009 Aug; 131(32):11581-9. PubMed ID: 19630416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid quantum mechanics/molecular mechanics-based molecular dynamics simulation of acid-catalyzed dehydration of polyols in liquid water.
    Caratzoulas S; Courtney T; Vlachos DG
    J Phys Chem A; 2011 Aug; 115(32):8816-21. PubMed ID: 21740014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling.
    Xie HB; Zhou Y; Zhang Y; Johnson JK
    J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein splicing of a Pyrococcus abyssi intein with a C-terminal glutamine.
    Mills KV; Manning JS; Garcia AM; Wuerdeman LA
    J Biol Chem; 2004 May; 279(20):20685-91. PubMed ID: 15024006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations.
    Archontis G; Simonson T; Moras D; Karplus M
    J Mol Biol; 1998 Feb; 275(5):823-46. PubMed ID: 9480772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing intein-catalyzed thioester formation by unnatural amino acid substitutions in the active site.
    Schwarzer D; Ludwig C; Thiel IV; Mootz HD
    Biochemistry; 2012 Jan; 51(1):233-42. PubMed ID: 22182201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution: dynamics of catalytic residues.
    Oakley AJ; Klvana M; Otyepka M; Nagata Y; Wilce MC; Damborský J
    Biochemistry; 2004 Feb; 43(4):870-8. PubMed ID: 14744129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.