These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22179336)

  • 1. Molecules as wires: molecule-assisted movement of charge and energy.
    Weiss EA; Wasielewski MR; Ratner MA
    Top Curr Chem; 2005; 257():103-33. PubMed ID: 22179336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
    Wenger OS
    Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transport in single molecules: from benzene to graphene.
    Chen F; Tao NJ
    Acc Chem Res; 2009 Mar; 42(3):429-38. PubMed ID: 19253984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced charge and energy transfer in molecular wires.
    Gilbert M; Albinsson B
    Chem Soc Rev; 2015 Feb; 44(4):845-62. PubMed ID: 25212903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making a molecular wire: charge and spin transport through para-phenylene oligomers.
    Weiss EA; Ahrens MJ; Sinks LE; Gusev AV; Ratner MA; Wasielewski MR
    J Am Chem Soc; 2004 May; 126(17):5577-84. PubMed ID: 15113229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy.
    Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B
    J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of bridge energetics on the preference for hole or electron transfer leading to charge recombination in donor-bridge-acceptor molecules.
    Colvin MT; Ricks AB; Wasielewski MR
    J Phys Chem A; 2012 Mar; 116(9):2184-91. PubMed ID: 22335802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing electron-transfer pathways in hydrocarbon frameworks: short-circuiting through-bond coupling by nonbonded contacts in rigid U-shaped norbornylogous systems containing a cavity-bound aromatic pendant group.
    Chakrabarti S; Liu M; Waldeck DH; Oliver AM; Paddon-Row MN
    J Am Chem Soc; 2007 Mar; 129(11):3247-56. PubMed ID: 17315995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of direct metal-π coupling in electronic transport through conjugated single-molecule junctions.
    Meisner JS; Ahn S; Aradhya SV; Krikorian M; Parameswaran R; Steigerwald M; Venkataraman L; Nuckolls C
    J Am Chem Soc; 2012 Dec; 134(50):20440-5. PubMed ID: 23167533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the donor-bridge energy gap on the electron-transfer mechanism in donor-bridge-acceptor systems.
    Sim E
    J Phys Chem B; 2005 Jun; 109(23):11829-35. PubMed ID: 16852452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic coupling for charge transfer in donor-bridge-acceptor systems. Performance of the two-state FCD model.
    Voityuk AA
    Phys Chem Chem Phys; 2012 Oct; 14(40):13789-93. PubMed ID: 22513425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical view of unimolecular rectification.
    Stadler R; Geskin V; Cornil J
    J Phys Condens Matter; 2008 Sep; 20(37):374105. PubMed ID: 21694412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced electron transfer across molecular bridges: electron- and hole-transfer superexchange pathways.
    Natali M; Campagna S; Scandola F
    Chem Soc Rev; 2014 Jun; 43(12):4005-18. PubMed ID: 24604096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge transmission through a molecular wire: the role of terminal sites for the current-voltage behavior.
    Petrov EG; Zelinskyy YR; May V; Hänggi P
    J Chem Phys; 2007 Aug; 127(8):084709. PubMed ID: 17764286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.
    Rosokha SV; Kochi JK
    Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of bridge-mediated electron transfer: a TDDFT electronic dynamics study.
    Ding F; Chapman CT; Liang W; Li X
    J Chem Phys; 2012 Dec; 137(22):22A512. PubMed ID: 23249049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact effects on electronic transport in donor-bridge-acceptor complexes interacting with a thermal bath.
    Volkovich R; Peskin U
    J Chem Phys; 2006 Dec; 125(24):244505. PubMed ID: 17199353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge recombination versus charge separation in donor-bridge-acceptor systems.
    Wiberg J; Guo L; Pettersson K; Nilsson D; Ljungdahl T; Mårtensson J; Albinsson B
    J Am Chem Soc; 2007 Jan; 129(1):155-63. PubMed ID: 17199294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems: correction of the two-state model.
    Voityuk AA
    J Chem Phys; 2006 Feb; 124(6):64505. PubMed ID: 16483218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.