BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22179588)

  • 1. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene.
    Wei W; Xu C; Ren J; Xu B; Qu X
    Chem Commun (Camb); 2012 Jan; 48(9):1284-6. PubMed ID: 22179588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range.
    Wen Y; Peng C; Li D; Zhuo L; He S; Wang L; Huang Q; Xu QH; Fan C
    Chem Commun (Camb); 2011 Jun; 47(22):6278-80. PubMed ID: 21503363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward single-metal-ion sensing by Förster resonance energy transfer.
    Sutter JU; Macmillan AM; Birch DJ; Rolinski OJ
    Ann N Y Acad Sci; 2008; 1130():62-7. PubMed ID: 18596333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium ion controlled switching of intra- to intermolecular electron transfer in crown ether appended free-base porphyrin-fullerene donor-acceptor systems.
    D'Souza F; Chitta R; Gadde S; Zandler ME; McCarty AL; Sandanayaka AS; Araki Y; Ito O
    J Phys Chem A; 2006 Apr; 110(13):4338-47. PubMed ID: 16571036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly selective luminescent sensor for the time-gated detection of potassium.
    Thibon A; Pierre VC
    J Am Chem Soc; 2009 Jan; 131(2):434-5. PubMed ID: 19113859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly selective fluorescent sensor for mercury ion (II) based on azathia-crown ether possessing a dansyl moiety.
    Dai H; Liu F; Gao Q; Fu T; Kou X
    Luminescence; 2011; 26(6):523-30. PubMed ID: 22162455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratiometric fluorescent ion detection in water with high sensitivity via aggregation-mediated fluorescence resonance energy transfer using a conjugated polyelectrolyte as an optical platform.
    Le VS; Kim B; Lee W; Jeong JE; Yang R; Woo HY
    Macromol Rapid Commun; 2013 May; 34(9):772-8. PubMed ID: 23417971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general and versatile molecular design for host molecules working in water: a duplex-based potassium sensor consisting of three functional regions.
    Fujimoto K; Muto Y; Inouye M
    Chem Commun (Camb); 2005 Oct; (38):4780-2. PubMed ID: 16193112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive protocol (FRET/SIMNSEF) for the determination of mercury ions: a unity of fluorescence quenching of graphene and enhancement of nanogold.
    Kong L; Wang J; Zheng G; Liu J
    Chem Commun (Camb); 2011 Oct; 47(37):10389-91. PubMed ID: 21842054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules.
    Dong H; Gao W; Yan F; Ji H; Ju H
    Anal Chem; 2010 Jul; 82(13):5511-7. PubMed ID: 20524633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient fluorescence sensor for superoxide with an acridinium ion-linked porphyrin triad.
    Kotani H; Ohkubo K; Crossley MJ; Fukuzumi S
    J Am Chem Soc; 2011 Jul; 133(29):11092-5. PubMed ID: 21699186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide.
    Zhang C; Yuan Y; Zhang S; Wang Y; Liu Z
    Angew Chem Int Ed Engl; 2011 Jul; 50(30):6851-4. PubMed ID: 21656878
    [No Abstract]   [Full Text] [Related]  

  • 13. A highly K(+)-selective phenylaza-[18]crown-6-lariat-ether-based fluoroionophore and its application in the sensing of K+ ions with an optical sensor film and in cells.
    Ast S; Schwarze T; Müller H; Sukhanov A; Michaelis S; Wegener J; Wolfbeis OS; Körzdörfer T; Dürkop A; Holdt HJ
    Chemistry; 2013 Oct; 19(44):14911-7. PubMed ID: 24105686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon Quantum Dot-Based Fluorescence Turn-On Metal Ion Sensors in Live Cells.
    Dhenadhayalan N; Lee HL; Yadav K; Lin KC; Lin YT; Chang AH
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23953-62. PubMed ID: 27541983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quadruple-channel sensing: a molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis.
    Schmittel M; Lin HW
    Angew Chem Int Ed Engl; 2007; 46(6):893-6. PubMed ID: 17167805
    [No Abstract]   [Full Text] [Related]  

  • 16. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.
    Chang H; Tang L; Wang Y; Jiang J; Li J
    Anal Chem; 2010 Mar; 82(6):2341-6. PubMed ID: 20180560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sugar-aza-crown ether-based fluorescent sensor for Hg(2+) and Cu(2+).
    Hsieh YC; Chir JL; Wu HH; Chang PS; Wu AT
    Carbohydr Res; 2009 Nov; 344(16):2236-9. PubMed ID: 19765693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared spectroscopy of ionophore-model systems: hydrated alkali metal ion 18-crown-6 ether complexes.
    Rodriguez JD; Vaden TD; Lisy JM
    J Am Chem Soc; 2009 Dec; 131(47):17277-85. PubMed ID: 19899741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer.
    Huang ST; Shi Y; Li NB; Luo HQ
    Chem Commun (Camb); 2012 Jan; 48(5):747-9. PubMed ID: 22121502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and multitopic complex formation of a photochromic bis(crown ether) based on benzobis(thiazole).
    Fedorov YV; Fedorova O; Schepel N; Alfimov M; Turek AM; Saltiel J
    J Phys Chem A; 2005 Sep; 109(38):8653-60. PubMed ID: 16834267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.