BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 22179594)

  • 1. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy.
    Young JW; Locke JC; Altinok A; Rosenfeld N; Bacarian T; Swain PS; Mjolsness E; Elowitz MB
    Nat Protoc; 2011 Dec; 7(1):80-8. PubMed ID: 22179594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy.
    Dhar N; Manina G
    Methods Mol Biol; 2015; 1285():241-56. PubMed ID: 25779320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquiring fluorescence time-lapse movies of budding yeast and analyzing single-cell dynamics using GRAFTS.
    Zopf CJ; Maheshri N
    J Vis Exp; 2013 Jul; (77):e50456. PubMed ID: 23892428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis.
    Mortier J; Van Riet S; Senovilla Herrero D; Vanoirbeek K; Aertsen A
    Microbiol Spectr; 2022 Feb; 10(1):e0204521. PubMed ID: 35171018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.
    Klein J; Leupold S; Biegler I; Biedendieck R; Münch R; Jahn D
    Bioinformatics; 2012 Sep; 28(17):2276-7. PubMed ID: 22772947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using time-lapse fluorescence microscopy to study gene regulation.
    Zou F; Bai L
    Methods; 2019 Apr; 159-160():138-145. PubMed ID: 30599195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of fluorescence microscopy to analyze genetic circuit dynamics.
    Süel G
    Methods Enzymol; 2011; 497():275-93. PubMed ID: 21601092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live-cell imaging tool optimization to study gene expression levels and dynamics in single cells of Bacillus cereus.
    Eijlander RT; Kuipers OP
    Appl Environ Microbiol; 2013 Sep; 79(18):5643-51. PubMed ID: 23851094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amount of colicin release in Escherichia coli is regulated by lysis gene expression of the colicin E2 operon.
    Mader A; von Bronk B; Ewald B; Kesel S; Schnetz K; Frey E; Opitz M
    PLoS One; 2015; 10(3):e0119124. PubMed ID: 25751274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics.
    O'Connor OM; Alnahhas RN; Lugagne JB; Dunlop MJ
    PLoS Comput Biol; 2022 Jan; 18(1):e1009797. PubMed ID: 35041653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifork chromosome replication in slow-growing bacteria.
    Trojanowski D; Hołówka J; Ginda K; Jakimowicz D; Zakrzewska-Czerwińska J
    Sci Rep; 2017 Mar; 7():43836. PubMed ID: 28262767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments.
    Ollion J; Elez M; Robert L
    Nat Protoc; 2019 Nov; 14(11):3144-3161. PubMed ID: 31554957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy.
    de Jong IG; Beilharz K; Kuipers OP; Veening JW
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21841760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circuit-level input integration in bacterial gene regulation.
    Espinar L; Dies M; Cagatay T; Süel GM; Garcia-Ojalvo J
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):7091-6. PubMed ID: 23572583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell, Time-Lapse Reactive Oxygen Species Detection in E. coli.
    Yang Z; Choi H
    Curr Protoc Cell Biol; 2018 Sep; 80(1):e60. PubMed ID: 30028910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BactImAS: a platform for processing and analysis of bacterial time-lapse microscopy movies.
    Mekterović I; Mekterović D; Maglica Z
    BMC Bioinformatics; 2014 Jul; 15(1):251. PubMed ID: 25059528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device.
    Schlimpert S; Flärdh K; Buttner J
    J Vis Exp; 2016 Feb; (108):53863. PubMed ID: 26967231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis.
    Burri O; Wolf B; Seitz A; Gönczy P
    PLoS One; 2017; 12(7):e0179752. PubMed ID: 28746386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.
    Wang Q; Niemi J; Tan CM; You L; West M
    Cytometry A; 2010 Jan; 77(1):101-10. PubMed ID: 19845017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.
    Shi H; Colavin A; Lee TK; Huang KC
    Nat Protoc; 2017 Feb; 12(2):429-438. PubMed ID: 28125106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.