BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22179683)

  • 1. Unitary bioresorbable cage/core bone graft substitutes for spinal arthrodesis coextruded from polycaprolactone biocomposites.
    Ergun A; Chung R; Ward D; Valdevit A; Ritter A; Kalyon DM
    Ann Biomed Eng; 2012 May; 40(5):1073-87. PubMed ID: 22179683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radially and axially graded multizonal bone graft substitutes targeting critical-sized bone defects from polycaprolactone/hydroxyapatite/tricalcium phosphate.
    Ergun A; Yu X; Valdevit A; Ritter A; Kalyon DM
    Tissue Eng Part A; 2012 Dec; 18(23-24):2426-36. PubMed ID: 22764839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bone graft substitute on marrow stromal cell proliferation and differentiation.
    Siggers K; Frei H; Fernlund G; Rossi F
    J Biomed Mater Res A; 2010 Sep; 94(3):877-85. PubMed ID: 20336765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model.
    Li Y; Wu ZG; Li XK; Guo Z; Wu SH; Zhang YQ; Shi L; Teoh SH; Liu YC; Zhang ZY
    Biomaterials; 2014 Jul; 35(22):5647-59. PubMed ID: 24743032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes.
    Wang J; Yang Q; Mao C; Zhang S
    J Biomed Mater Res A; 2012 Nov; 100(11):2929-38. PubMed ID: 22700033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W
    Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of calcium phosphate crystal assemblies on the proliferation and osteogenic gene expression of rat bone marrow stromal cells.
    Liu Y; Cooper PR; Barralet JE; Shelton RM
    Biomaterials; 2007 Mar; 28(7):1393-403. PubMed ID: 17166582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maxillary sinus floor elevation using a tissue-engineered bone with calcium-magnesium phosphate cement and bone marrow stromal cells in rabbits.
    Zeng D; Xia L; Zhang W; Huang H; Wei B; Huang Q; Wei J; Liu C; Jiang X
    Tissue Eng Part A; 2012 Apr; 18(7-8):870-81. PubMed ID: 22066969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite.
    Peter SJ; Lu L; Kim DJ; Mikos AG
    Biomaterials; 2000 Jun; 21(12):1207-13. PubMed ID: 10811302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation.
    Arinzeh TL; Tran T; Mcalary J; Daculsi G
    Biomaterials; 2005 Jun; 26(17):3631-8. PubMed ID: 15621253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.
    Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA
    Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells.
    Trojani C; Boukhechba F; Scimeca JC; Vandenbos F; Michiels JF; Daculsi G; Boileau P; Weiss P; Carle GF; Rochet N
    Biomaterials; 2006 Jun; 27(17):3256-64. PubMed ID: 16510180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.
    E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC
    Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invitro study of adherent mandibular osteoblast-like cells on carrier materials.
    Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.