These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22179967)

  • 1. Molecular cytogenetic characterization of a new leaf rolling triticale.
    Yang EN; Yang ZJ; Zhang JF; Zou YC; Ren ZL
    Genet Mol Res; 2011 Nov; 10(4):2953-61. PubMed ID: 22179967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Molecular analysis of the triticale lines with different Vrn gene systems using microsatellite markers and hybridization in situ].
    Leonova IN; Dobrovol'skaia OB; Kminskaia LN; Adogina IG; Koren' LV; Khotyleva LV; Salina EA
    Genetika; 2005 Sep; 41(9):1236-43. PubMed ID: 16240635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Polymorphism of heterochromatin C-blocks of rye genome chromosomes in rye-wheat amphidiploids and their chromosome substitution lines].
    Khokhlova SA; Bychenko AP; Gaĭnutdinov AV; Gordeĭ IA
    Tsitol Genet; 2006; 40(3):11-6. PubMed ID: 16933847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular cytogenetic characterization of spring triticale line 131/7 carrying a rye-wheat translocation].
    Divashuk MG; Krupin PIu; Solov'ev AA; Karlov GI
    Genetika; 2010 Feb; 46(2):211-7. PubMed ID: 20297655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of crossability between triticale (X Triticosecale Wittmack) and common wheat, durum wheat and rye.
    Hills MJ; Hall LM; Messenger DF; Graf RJ; Beres BL; Eudes F
    Environ Biosafety Res; 2007; 6(4):249-57. PubMed ID: 18289500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of repetitive sequences polymorphism in Secale cereale by genomic in situ hybridization-banding.
    Zhou JP; Yang ZJ; Li GR; Liu C; Ren ZL
    J Integr Plant Biol; 2008 Apr; 50(4):452-6. PubMed ID: 18713379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of Triticale and soft wheat forms with substituted wheat and rye chromosomes].
    Suvorova EIu; Cherednichenko VN; Semenov VI
    Tsitol Genet; 2000; 34(5):42-9. PubMed ID: 11213630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition].
    Adonina IG; Orlovskaia OA; Tereshchenko OY; Koren' LV; Khotyleva LV; Shumnyĭ VK; Salina EA
    Genetika; 2011 Apr; 47(4):516-26. PubMed ID: 21675241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cytogenetic characterization and disease resistance observation of wheat-Dasypyrum breviaristatum partial amphiploid and its derivatives.
    Yang ZJ; Li GR; Feng J; Jiang HR; Ren ZL
    Hereditas; 2005 Feb; 142(2005):80-5. PubMed ID: 16970616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Identification and characteristics of the 1R (1B) bread wheat substitution strains].
    Motsnyĭ II; Faĭt VI; Blagodarova EM
    Tsitol Genet; 2009; 43(3):26-35. PubMed ID: 19938634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of the effects of parental genotypes of rye lines on the development of quantitative traits in primary octaploid triticale. Plant height].
    Tikhenko HD; Tsvetkova NV; Voĭlokov AV
    Genetika; 2003 Jan; 39(1):64-9. PubMed ID: 12624935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Characteristics of common wheat cultivars of West Siberia carrying the wheat-rye 1RS.1BL translocation].
    Trubacheva NV; Rosseeva LP; Belan IA; Osadchaia TS; Kravtsova LA; Kolmakov IuV; Blokhina NP; Pershina LA
    Genetika; 2011 Jan; 47(1):18-24. PubMed ID: 21446180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the resistance of triticale by using genes from wheat and rye.
    Tyrka M; Chełkowski J
    J Appl Genet; 2004; 45(3):283-95. PubMed ID: 15306719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale).
    Kalinka A; Achrem M
    Planta; 2018 Apr; 247(4):807-829. PubMed ID: 29234880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lipoxygenase from the leaves of wheat grown under different water supply conditions].
    Permiakova MD; Permiakov AV; Osipova SV; Pshenichnikova TA
    Prikl Biokhim Mikrobiol; 2012; 48(1):88-94. PubMed ID: 22567890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Production of wheat-rye substitution lines based on winter rye cultivars with karyotype identification by means of C-banding, GISH, and SSR markers].
    Silkova OG; Dobrovol'skaia OB; Dubovets NI; Adonina IG; Kravtsova LA; Shchapova AI; Shumnyĭ VK
    Genetika; 2007 Aug; 43(8):1149-52. PubMed ID: 17958318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of genotypes of parental rye lines on the development of quantitative traits in primary octoploid Triticale: spike fertility].
    Tikhenko ND; Tsvetkoa NV; Voĭlokov AV
    Genetika; 2003 Mar; 39(3):370-5. PubMed ID: 12722637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of B chromosome associated with tissue culture in wheat-rye cross.
    Tian B; Li H
    J Integr Plant Biol; 2009 Sep; 51(9):834-9. PubMed ID: 19723242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CE determination of secaloindoline allelic forms in hexaploid triticale (x Triticosecale Wittmack).
    Salmanowicz BP
    J Sep Sci; 2010 Mar; 33(4-5):643-50. PubMed ID: 20063356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Construction of secalotriticum (rye-wheat amphidiploids with the rye cytoplasm (RRAABB, 2n = 42)), the formation of the karyotypes of the F1BC1 and F1BC2 rye-triticale amphidiploids, and commercial and biological characteristics of the early secalotriticum generations].
    Bel'ko NB; Gordeĭ IA; Shchet'ko IS
    Genetika; 2009 May; 45(5):642-51. PubMed ID: 19534423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.