BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22180189)

  • 1. Hadamard-encoding combined with two-dimensional-selective radiofrequency excitations for flexible and efficient acquisitions of multiple voxels in MR spectroscopy.
    Busch MG; Finsterbusch J
    J Magn Reson Imaging; 2012 Apr; 35(4):976-83. PubMed ID: 22180189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-echo-time magnetic resonance spectroscopy of single voxel with arbitrary shape in the living human brain using segmented two-dimensional selective radiofrequency excitations based on a blipped-planar trajectory.
    Weber-Fahr W; Busch MG; Finsterbusch J
    Magn Reson Imaging; 2009 Jun; 27(5):664-71. PubMed ID: 19108976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-spin-echo imaging of inner fields-of-view with 2D-selective RF excitations.
    Finsterbusch J
    J Magn Reson Imaging; 2010 Jun; 31(6):1530-7. PubMed ID: 20512911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially 2D-selective RF excitations using the PROPELLER trajectory: basic principles and application to MR spectroscopy of irregularly shaped single voxel.
    Busch MG; Finsterbusch J
    Magn Reson Med; 2011 Nov; 66(5):1218-25. PubMed ID: 21465546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmented 2D-selective RF excitations with weighted averaging and flip angle adaptation for MR spectroscopy of irregularly shaped voxel.
    Finsterbusch J; Busch MG
    Magn Reson Med; 2011 Aug; 66(2):333-40. PubMed ID: 21360589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eliminating side excitations in PROPELLER-based 2D-selective RF excitations.
    Busch MG; Finsterbusch J
    Magn Reson Med; 2012 Nov; 68(5):1383-9. PubMed ID: 22294489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the performance of diffusion-weighted inner field-of-view echo-planar imaging based on 2D-selective radiofrequency excitations by tilting the excitation plane.
    Finsterbusch J
    J Magn Reson Imaging; 2012 Apr; 35(4):984-92. PubMed ID: 22170770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing voxel bleed in Hadamard-encoded MRI and MRS.
    Goelman G; Liu S; Gonen O
    Magn Reson Med; 2006 Jun; 55(6):1460-5. PubMed ID: 16685718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous two-voxel localized (1)H-observed (13)C-edited spectroscopy for in vivo MRS on rat brain at 9.4T: Application to the investigation of excitotoxic lesions.
    Doan BT; Autret G; Mispelter J; Méric P; Même W; Montécot-Dubourg C; Corrèze JL; Szeremeta F; Gillet B; Beloeil JC
    J Magn Reson; 2009 May; 198(1):94-104. PubMed ID: 19289293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal scaling improves the signal-to-noise ratio of measurements with segmented 2D-selective radiofrequency excitations.
    Finsterbusch J; Busch MG; Larson PE
    Magn Reson Med; 2013 Dec; 70(6):1491-9. PubMed ID: 23440633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-spin-echo 3D transverse hadamard encoded proton spectroscopic imaging in the human brain.
    Cohen O; Tal A; Goelman G; Gonen O
    Magn Reson Med; 2013 Jul; 70(1):7-15. PubMed ID: 22926923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrum separation resolves partial-volume effect of MRSI as demonstrated on brain tumor scans.
    Su Y; Thakur SB; Karimi S; Du S; Sajda P; Huang W; Parra LC
    NMR Biomed; 2008 Nov; 21(10):1030-42. PubMed ID: 18759383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional Hadamard-encoded proton spectroscopic imaging in the human brain using time-cascaded pulses at 3 Tesla.
    Cohen O; Tal A; Gonen O
    Magn Reson Med; 2014 Oct; 72(4):923-33. PubMed ID: 24259447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new sequence for shaped voxel spectroscopy in the human brain using 2D spatially selective excitation and parallel transmission.
    Waxmann P; Mekle R; Schubert F; Brühl R; Kuehne A; Lindel TD; Seifert F; Speck O; Ittermann B
    NMR Biomed; 2016 Aug; 29(8):1028-37. PubMed ID: 27254102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unifying framework for partial volume segmentation of brain MR images.
    Van Leemput K; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2003 Jan; 22(1):105-19. PubMed ID: 12703764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-echo line scan imaging using 2D-selective RF excitation.
    Finsterbusch J; Frahm J
    J Magn Reson; 2000 Nov; 147(1):17-25. PubMed ID: 11042043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast three-dimensional 1H MR spectroscopic imaging at 7 Tesla using "spectroscopic missing pulse--SSFP".
    Schuster C; Dreher W; Stadler J; Bernarding J; Leibfritz D
    Magn Reson Med; 2008 Nov; 60(5):1243-9. PubMed ID: 18836998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of multi-planar images for improved three-dimensional object reconstruction.
    Yuan X; Yuan X
    Comput Med Imaging Graph; 2011 Jul; 35(5):373-82. PubMed ID: 21177071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constrained reverse diffusion for thick slice interpolation of 3D volumetric MRI images.
    Neubert A; Salvado O; Acosta O; Bourgeat P; Fripp J
    Comput Med Imaging Graph; 2012 Mar; 36(2):130-8. PubMed ID: 21920702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.