BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22180531)

  • 1. Structural conservation of an ancient tRNA sensor in eukaryotic glutaminyl-tRNA synthetase.
    Grant TD; Snell EH; Luft JR; Quartley E; Corretore S; Wolfley JR; Snell ME; Hadd A; Perona JJ; Phizicky EM; Grayhack EJ
    Nucleic Acids Res; 2012 Apr; 40(8):3723-31. PubMed ID: 22180531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M; Sauter C; Becker HD; Paulus CA; Giegé R; Kern D
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of yeast glutaminyl-tRNA synthetase and modeling of its interaction with tRNA.
    Grant TD; Luft JR; Wolfley JR; Snell ME; Tsuruta H; Corretore S; Quartley E; Phizicky EM; Grayhack EJ; Snell EH
    J Mol Biol; 2013 Jul; 425(14):2480-93. PubMed ID: 23583912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases.
    Hadd A; Perona JJ
    J Mol Biol; 2014 Oct; 426(21):3619-33. PubMed ID: 25149203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria.
    Liao CC; Lin CH; Chen SJ; Wang CC
    Nucleic Acids Res; 2012 Oct; 40(18):9171-81. PubMed ID: 22821561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
    Guo LT; Helgadóttir S; Söll D; Ling J
    Nucleic Acids Res; 2012 Sep; 40(16):7967-74. PubMed ID: 22661575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging.
    Rogers KC; Söll D
    J Mol Evol; 1995 May; 40(5):476-81. PubMed ID: 7783222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaminyl-tRNA synthetase: from genetics to molecular recognition.
    Ibba M; Hong KW; Söll D
    Genes Cells; 1996 May; 1(5):421-7. PubMed ID: 9078373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Adachi T; Inokuchi H; Söll D
    Biochimie; 1993; 75(12):1083-90. PubMed ID: 8199243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single amidotransferase forms asparaginyl-tRNA and glutaminyl-tRNA in Chlamydia trachomatis.
    Raczniak G; Becker HD; Min B; Söll D
    J Biol Chem; 2001 Dec; 276(49):45862-7. PubMed ID: 11585842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion.
    Rinehart J; Krett B; Rubio MA; Alfonzo JD; Söll D
    Genes Dev; 2005 Mar; 19(5):583-92. PubMed ID: 15706032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a glutaminyl-tRNA synthetase mutation Saccharomyces cerevisiae.
    Mitchell AP; Ludmerer SW
    J Bacteriol; 1984 May; 158(2):530-4. PubMed ID: 6144664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase.
    Gagnon Y; Lacoste L; Champagne N; Lapointe J
    J Biol Chem; 1996 Jun; 271(25):14856-63. PubMed ID: 8662929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
    Weygand-Durasević I; Schwob E; Söll D
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):2010-4. PubMed ID: 7680483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of bases in Escherichia coli tRNA(Gln) by glutaminyl-tRNA synthetase: a complete identity set.
    Hayase Y; Jahn M; Rogers MJ; Sylvers LA; Koizumi M; Inoue H; Ohtsuka E; Söll D
    EMBO J; 1992 Nov; 11(11):4159-65. PubMed ID: 1396597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer.
    Lamour V; Quevillon S; Diriong S; N'Guyen VC; Lipinski M; Mirande M
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8670-4. PubMed ID: 8078941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
    Schwob E; Söll D
    EMBO J; 1993 Dec; 12(13):5201-8. PubMed ID: 7505222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenesis of glutaminyl-mt tRNAGln in human mitochondria.
    Nagao A; Suzuki T; Katoh T; Sakaguchi Y; Suzuki T
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16209-14. PubMed ID: 19805282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.