These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22180627)

  • 21. Non-random association of transposable elements with duplicated genomic blocks in Arabidopsis thaliana.
    Hughes AL; Friedman R; Ekollu V; Rose JR
    Mol Phylogenet Evol; 2003 Dec; 29(3):410-6. PubMed ID: 14615183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription factor families have much higher expansion rates in plants than in animals.
    Shiu SH; Shih MC; Li WH
    Plant Physiol; 2005 Sep; 139(1):18-26. PubMed ID: 16166257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli.
    Hanada K; Zou C; Lehti-Shiu MD; Shinozaki K; Shiu SH
    Plant Physiol; 2008 Oct; 148(2):993-1003. PubMed ID: 18715958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.
    He Y; Mao S; Gao Y; Zhu L; Wu D; Cui Y; Li J; Qian W
    PLoS One; 2016; 11(6):e0157558. PubMed ID: 27322342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana.
    Mondragon-Palomino M; Gaut BS
    Mol Biol Evol; 2005 Dec; 22(12):2444-56. PubMed ID: 16120808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history.
    Zahn LM; Kong H; Leebens-Mack JH; Kim S; Soltis PS; Landherr LL; Soltis DE; Depamphilis CW; Ma H
    Genetics; 2005 Apr; 169(4):2209-23. PubMed ID: 15687268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural divergence of chromosomal segments that arose from successive duplication events in the Arabidopsis genome.
    Ziolkowski PA; Blanc G; Sadowski J
    Nucleic Acids Res; 2003 Feb; 31(4):1339-50. PubMed ID: 12582254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity and evolution of transposable elements in Arabidopsis.
    Joly-Lopez Z; Bureau TE
    Chromosome Res; 2014 Jun; 22(2):203-16. PubMed ID: 24801342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes.
    Guo YL
    Plant J; 2013 Mar; 73(6):941-51. PubMed ID: 23216999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contrasting modes of diversification in the Aux/IAA and ARF gene families.
    Remington DL; Vision TJ; Guilfoyle TJ; Reed JW
    Plant Physiol; 2004 Jul; 135(3):1738-52. PubMed ID: 15247399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids.
    Lyons E; Pedersen B; Kane J; Alam M; Ming R; Tang H; Wang X; Bowers J; Paterson A; Lisch D; Freeling M
    Plant Physiol; 2008 Dec; 148(4):1772-81. PubMed ID: 18952863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana.
    Mudge J; Cannon SB; Kalo P; Oldroyd GE; Roe BA; Town CD; Young ND
    BMC Plant Biol; 2005 Aug; 5():15. PubMed ID: 16102170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots.
    Xiong Y; Liu T; Tian C; Sun S; Li J; Chen M
    Plant Mol Biol; 2005 Sep; 59(1):191-203. PubMed ID: 16217612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members.
    Matsumura Y; Iwakawa H; Machida Y; Machida C
    Plant J; 2009 May; 58(3):525-37. PubMed ID: 19154202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated identification of conserved synteny after whole-genome duplication.
    Catchen JM; Conery JS; Postlethwait JH
    Genome Res; 2009 Aug; 19(8):1497-505. PubMed ID: 19465509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide identification and characterization of the Dof gene family in Medicago truncatula.
    Shu YJ; Song LL; Zhang J; Liu Y; Guo CH
    Genet Mol Res; 2015 Sep; 14(3):10645-57. PubMed ID: 26400295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conservation of dual-targeted proteins in Arabidopsis and rice points to a similar pattern of gene-family evolution.
    Morgante CV; Rodrigues RA; Marbach PA; Borgonovi CM; Moura DS; Silva-Filho MC
    Mol Genet Genomics; 2009 May; 281(5):525-38. PubMed ID: 19214577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fractionation of synteny in a genomic region containing tandemly duplicated genes across glycine max, Medicago truncatula, and Arabidopsis thaliana.
    Schlueter JA; Scheffler BE; Jackson S; Shoemaker RC
    J Hered; 2008; 99(4):390-5. PubMed ID: 18316321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of plant metabolic gene clusters within dynamic chromosomal regions.
    Field B; Fiston-Lavier AS; Kemen A; Geisler K; Quesneville H; Osbourn AE
    Proc Natl Acad Sci U S A; 2011 Sep; 108(38):16116-21. PubMed ID: 21876149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms.
    Mondragón-Palomino M; Stam R; John-Arputharaj A; Dresselhaus T
    BMC Evol Biol; 2017 Dec; 17(1):255. PubMed ID: 29246101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.