These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22181016)

  • 1. Bone loss following spinal cord injury in a rat model.
    Voor MJ; Brown EH; Xu Q; Waddell SW; Burden RL; Burke DA; Magnuson DS
    J Neurotrauma; 2012 May; 29(8):1676-82. PubMed ID: 22181016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord injury causes rapid osteoclastic resorption and growth plate abnormalities in growing rats (SCI-induced bone loss in growing rats).
    Morse L; Teng YD; Pham L; Newton K; Yu D; Liao WL; Kohler T; Müller R; Graves D; Stashenko P; Battaglino R
    Osteoporos Int; 2008 May; 19(5):645-52. PubMed ID: 17987335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the structural and material properties of the tibia in patients with spinal cord injury.
    McCarthy ID; Bloomer Z; Gall A; Keen R; Ferguson-Pell M
    Spinal Cord; 2012 Apr; 50(4):333-7. PubMed ID: 22124349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats.
    Jiang SD; Jiang LS; Dai LY
    Osteoporos Int; 2006 Oct; 17(10):1552-61. PubMed ID: 16874443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standing frame and electrical stimulation therapies partially preserve bone strength in a rodent model of acute spinal cord injury.
    Zamarioli A; Battaglino RA; Morse LR; Sudhakar S; Maranho DA; Okubo R; Volpon JB; Shimano AC
    Am J Phys Med Rehabil; 2013 May; 92(5):402-10. PubMed ID: 23478455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model.
    Metzger CE; Gong S; Aceves M; Bloomfield SA; Hook MA
    Bone; 2019 Mar; 120():465-475. PubMed ID: 30550849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testosterone dose dependently prevents bone and muscle loss in rodents after spinal cord injury.
    Yarrow JF; Conover CF; Beggs LA; Beck DT; Otzel DM; Balaez A; Combs SM; Miller JR; Ye F; Aguirre JI; Neuville KG; Williams AA; Conrad BP; Gregory CM; Wronski TJ; Bose PK; Borst SE
    J Neurotrauma; 2014 May; 31(9):834-45. PubMed ID: 24378197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Bone Mineral Density at the Distal Femur and the Proximal Tibia by Dual-Energy X-ray Absorptiometry in Individuals With Spinal Cord Injury: Precision of Protocol and Relation to Injury Duration.
    Lobos S; Cooke A; Simonett G; Ho C; Boyd SK; Edwards WB
    J Clin Densitom; 2018; 21(3):338-346. PubMed ID: 28662973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal Examination of Bone Loss in Male Rats After Moderate-Severe Contusion Spinal Cord Injury.
    Otzel DM; Conover CF; Ye F; Phillips EG; Bassett T; Wnek RD; Flores M; Catter A; Ghosh P; Balaez A; Petusevsky J; Chen C; Gao Y; Zhang Y; Jiron JM; Bose PK; Borst SE; Wronski TJ; Aguirre JI; Yarrow JF
    Calcif Tissue Int; 2019 Jan; 104(1):79-91. PubMed ID: 30218117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone loss after severe spinal cord injury coincides with reduced bone formation and precedes bone blood flow deficits.
    Yarrow JF; Wnek RD; Conover CF; Reynolds MC; Buckley KH; Kura JR; Sutor TW; Otzel DM; Mattingly AJ; Croft S; Aguirre JI; Borst SE; Beck DT; McCullough DJ
    J Appl Physiol (1985); 2021 Oct; 131(4):1288-1299. PubMed ID: 34473574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific bone mineral density distribution in the tibia of individuals with chronic spinal cord injury, derived from multi-slice peripheral Quantitative Computed Tomography (pQCT) - A cross-sectional study.
    Coupaud S; Gislason MK; Purcell M; Sasagawa K; Tanner KE
    Bone; 2017 Apr; 97():29-37. PubMed ID: 28034635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB.
    Nessler JA; De Leon RD; Sharp K; Kwak E; Minakata K; Reinkensmeyer DJ
    J Neurotrauma; 2006 Jun; 23(6):882-96. PubMed ID: 16774473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically induced muscle contractions influence bone density decline after spinal cord injury.
    Shields RK; Dudley-Javoroski S; Law LA
    Spine (Phila Pa 1976); 2006 Mar; 31(5):548-53. PubMed ID: 16508550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor training with adjuvant testosterone preserves cancellous bone and promotes muscle plasticity in male rats after severe spinal cord injury.
    Yarrow JF; Kok HJ; Phillips EG; Conover CF; Lee J; Bassett TE; Buckley KH; Reynolds MC; Wnek RD; Otzel DM; Chen C; Jiron JM; Graham ZA; Cardozo C; Vandenborne K; Bose PK; Aguirre JI; Borst SE; Ye F
    J Neurosci Res; 2020 May; 98(5):843-868. PubMed ID: 31797423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy.
    Jiang SD; Shen C; Jiang LS; Dai LY
    Osteoporos Int; 2007 Jun; 18(6):743-50. PubMed ID: 17216554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindlimb loading determines stepping quantity and quality following spinal cord transection.
    Timoszyk WK; Nessler JA; Acosta C; Roy RR; Edgerton VR; Reinkensmeyer DJ; de Leon R
    Brain Res; 2005 Jul; 1050(1-2):180-9. PubMed ID: 15979592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment with curcumin alleviates sublesional bone loss following spinal cord injury in rats.
    Yang X; He B; Liu P; Yan L; Yang M; Li D
    Eur J Pharmacol; 2015 Oct; 765():209-16. PubMed ID: 26300394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testosterone Plus Finasteride Prevents Bone Loss without Prostate Growth in a Rodent Spinal Cord Injury Model.
    Yarrow JF; Phillips EG; Conover CF; Bassett TE; Chen C; Teurlings T; Vasconez A; Alerte J; Prock H; Jiron JM; Flores M; Aguirre JI; Borst SE; Ye F
    J Neurotrauma; 2017 Nov; 34(21):2972-2981. PubMed ID: 28338402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone loss in a new rodent model combining spinal cord injury and cast immobilization.
    Yarrow JF; Ye F; Balaez A; Mantione JM; Otzel DM; Chen C; Beggs LA; Baligand C; Keener JE; Lim W; Vohra RS; Batra A; Borst SE; Bose PK; Thompson FJ; Vandenborne K
    J Musculoskelet Neuronal Interact; 2014 Sep; 14(3):255-66. PubMed ID: 25198220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man.
    Mohr T; Podenphant J; Biering-Sorensen F; Galbo H; Thamsborg G; Kjaer M
    Calcif Tissue Int; 1997 Jul; 61(1):22-5. PubMed ID: 9192506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.