These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 22181085)
1. Deterministic Brownian motion generated from differential delay equations. Lei J; Mackey MC Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041105. PubMed ID: 22181085 [TBL] [Abstract][Full Text] [Related]
2. Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity. Pieroux D; Mandel P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056213. PubMed ID: 12786256 [TBL] [Abstract][Full Text] [Related]
3. Bifurcation in kinetic equation for interacting Fermi systems. Morawetz K Chaos; 2003 Jun; 13(2):572-7. PubMed ID: 12777121 [TBL] [Abstract][Full Text] [Related]
4. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications. Ding XL; Nieto JJ Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265151 [TBL] [Abstract][Full Text] [Related]
5. Calculation of relaxation rates from microscopic equations of motion. Haydock R; Nex CM; Simons BD Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5292-302. PubMed ID: 11969489 [TBL] [Abstract][Full Text] [Related]
6. n-scroll chaotic attractors from a first-order time-delay differential equation. Yalçin ME; Ozoguz S Chaos; 2007 Sep; 17(3):033112. PubMed ID: 17902994 [TBL] [Abstract][Full Text] [Related]
7. Approximating chaotic saddles for delay differential equations. Taylor SR; Campbell SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986 [TBL] [Abstract][Full Text] [Related]
8. Contaminant transport models under random sources. Patrick Wang P; Zheng C Ground Water; 2005; 43(3):423-33. PubMed ID: 15882334 [TBL] [Abstract][Full Text] [Related]
9. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback. Gaudreault M; Drolet F; Viñals J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051124. PubMed ID: 21230454 [TBL] [Abstract][Full Text] [Related]
10. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study. Holtzer GL; Velegol D Langmuir; 2005 Oct; 21(22):10074-81. PubMed ID: 16229529 [TBL] [Abstract][Full Text] [Related]
11. Statistical analysis of differential equations: introducing probability measures on numerical solutions. Conrad PR; Girolami M; Särkkä S; Stuart A; Zygalakis K Stat Comput; 2017; 27(4):1065-1082. PubMed ID: 32226237 [TBL] [Abstract][Full Text] [Related]
14. [Deterministic chaos in the dynamics of biomembrane ion channel current]. Bystraĭ GP; Vorokh AS; Andreev SV Biofizika; 2005; 50(5):851-61. PubMed ID: 16248160 [TBL] [Abstract][Full Text] [Related]
15. Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion. Zhang X; Ruan D J Inequal Appl; 2018; 2018(1):201. PubMed ID: 30839575 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamics and Brownian motions of a spheroid near a rigid wall. De Corato M; Greco F; D'Avino G; Maffettone PL J Chem Phys; 2015 May; 142(19):194901. PubMed ID: 26001478 [TBL] [Abstract][Full Text] [Related]
17. Constructing low-dimensional ordinary differential equations from chaotic time series of high- or infinite-dimensional systems using radial-function-based regression. Tsutsumi N; Nakai K; Saiki Y Phys Rev E; 2023 Nov; 108(5-1):054220. PubMed ID: 38115529 [TBL] [Abstract][Full Text] [Related]
18. Solutions of the Wheeler-Feynman equations with discontinuous velocities. de Souza DC; De Luca J Chaos; 2015 Jan; 25(1):013102. PubMed ID: 25637913 [TBL] [Abstract][Full Text] [Related]
19. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems. Chen JC; Kim AS Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559 [TBL] [Abstract][Full Text] [Related]
20. Chaotic motion of propagating pulses in the Gray-Scott model. Yadome M; Ueda K; Nagayama M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056207. PubMed ID: 21728630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]