These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22181110)

  • 1. Maximum-entropy Monte Carlo method for the inversion of the structure factor in simple classical systems.
    D'Alessandro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041130. PubMed ID: 22181110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information-theory-based solution of the inverse problem in classical statistical mechanics.
    D'Alessandro M; Cilloco F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021128. PubMed ID: 20866796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the interaction potential from the pair distribution function: an inverse Monte Carlo technique.
    Almarza NG; Lomba E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011202. PubMed ID: 12935127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical mechanical theory for the structure of steady state systems: application to a Lennard-Jones fluid with applied temperature gradient.
    Attard P
    J Chem Phys; 2004 Oct; 121(15):7076-85. PubMed ID: 15473773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum entropy, analysis of kinetic processes involving chemical and folding-unfolding changes in proteins.
    Plaza del Pino IM; Parody-Morreale A; Sanchez-Ruiz JM
    Anal Biochem; 1997 Jan; 244(2):239-55. PubMed ID: 9025940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular theory of thermal conductivity of the Lennard-Jones fluid.
    Eskandari Nasrabad A; Laghaei R; Eu BC
    J Chem Phys; 2006 Feb; 124(8):084506. PubMed ID: 16512728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbed-chain equation of state for the solid phase.
    Cochran TW; Chiew YC
    J Chem Phys; 2006 Jun; 124(22):224901. PubMed ID: 16784308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory for non-equilibrium statistical mechanics.
    Attard P
    Phys Chem Chem Phys; 2006 Aug; 8(31):3585-611. PubMed ID: 16883388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct excess entropy calculation for a Lennard-Jones fluid by the integral equation method.
    Jakse N; Charpentier I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061203. PubMed ID: 16241214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid.
    Attard P
    J Chem Phys; 2005 Jun; 122(24):244105. PubMed ID: 16035744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between self-diffusivity, packing fraction, and excess entropy in simple bulk and confined fluids.
    Mittal J; Errington JR; Truskett TM
    J Phys Chem B; 2007 Aug; 111(34):10054-63. PubMed ID: 17629320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy maximization constrained by solvent flatness: a new method for macromolecular phase extension and map improvement.
    Xiang S; Carter CW; Bricogne G; Gilmore CJ
    Acta Crystallogr D Biol Crystallogr; 1993 Jan; 49(Pt 1):193-212. PubMed ID: 15299561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logarithmic finite-size effects on interfacial free energies: phenomenological theory and Monte Carlo studies.
    Schmitz F; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012128. PubMed ID: 25122272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy, local order, and the freezing transition in Morse liquids.
    Chakraborty SN; Chakravarty C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011201. PubMed ID: 17677432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of fluid-phase behavior using transition-matrix Monte Carlo: binary Lennard-Jones mixtures.
    Shen VK; Errington JR
    J Chem Phys; 2005 Feb; 122(6):064508. PubMed ID: 15740389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-vapor density profiles from equilibrium limit of diffusion equation for interacting particles.
    Chen Y; Aranovich GL; Donohue MD
    J Colloid Interface Sci; 2007 Mar; 307(1):34-9. PubMed ID: 17184788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Interaction Forces between Macroparticles in Simple Fluids by Molecular Dynamics Simulation.
    Shinto H; Miyahara M; Higashitani K
    J Colloid Interface Sci; 1999 Jan; 209(1):79-85. PubMed ID: 9878139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon: quantum Monte Carlo simulations.
    Neumann M; Zoppi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031203. PubMed ID: 11909036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pair correlation functions and the self-diffusion coefficient of Lennard-Jones liquid in the modified free volume theory of diffusion.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Phys Chem B; 2005 Nov; 109(45):21375-9. PubMed ID: 16853773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.