These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22181141)

  • 1. Ice-lens formation and geometrical supercooling in soils and other colloidal materials.
    Style RW; Peppin SS; Cocks AC; Wettlaufer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041402. PubMed ID: 22181141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Anionic Polyacrylamide Polymer on Frost Heave Mitigation and Its Implication for Frost-Susceptible Soil.
    Ji Y; Wang H; Li X; Zhao P; Wang Q; Li R; Vandeginste V
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segregated Ice Growth in a Suspension of Colloidal Particles.
    Schollick JM; Style RW; Curran A; Wettlaufer JS; Dufresne ER; Warren PB; Velikov KP; Dullens RP; Aarts DG
    J Phys Chem B; 2016 Apr; 120(16):3941-9. PubMed ID: 27046043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic ice banding in freezing colloidal dispersions.
    Anderson AM; Worster MG
    Langmuir; 2012 Dec; 28(48):16512-23. PubMed ID: 23110707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic transitions with changing particle size that control ice lens growth.
    Saruya T; Rempel AW; Kurita K
    J Phys Chem B; 2014 Nov; 118(47):13420-6. PubMed ID: 24984185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degraded frozen soil and reduced frost heave in China due to climate warming.
    Zhang Z; Li M; Wen Z; Yin Z; Tang Y; Gao S; Wu Q
    Sci Total Environ; 2023 Oct; 893():164914. PubMed ID: 37327898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calorimetric studies of freeze-induced dehydration of phospholipids.
    Bronshteyn VL; Steponkus PL
    Biophys J; 1993 Nov; 65(5):1853-65. PubMed ID: 8298015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates.
    Holmstrup M; Bayley M; Ramløv H
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5716-20. PubMed ID: 11960026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconsidering the Clapeyron equation in the freezing of colloidal suspensions: From macroscale to the microscale.
    Wang L; Wang Z
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):113. PubMed ID: 29255973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect measurement of interfacial melting from macroscopic ice observations.
    Saruya T; Kurita K; Rempel AW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060401. PubMed ID: 25019705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frost heave in argon.
    Zhu DM; Vilches OE; Dash JG; Sing B; Wettlaufer JS
    Phys Rev Lett; 2000 Dec; 85(23):4908-11. PubMed ID: 11102148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.
    Vorontsov DA; Sazaki G; Hyon SH; Matsumura K; Furukawa Y
    J Phys Chem B; 2014 Aug; 118(34):10240-9. PubMed ID: 25113284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic growth of ice crystals during the freezing of beef.
    Menegalli FC; Calvelo A
    Meat Sci; 1979 Jul; 3(3):179-98. PubMed ID: 22055347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental verification of morphological instability in freezing aqueous colloidal suspensions.
    Peppin SS; Wettlaufer JS; Worster MG
    Phys Rev Lett; 2008 Jun; 100(23):238301. PubMed ID: 18643549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.
    Nakamura T; Takagi H; Shima J
    Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of growth rates of an ice crystal from supercooled heavy water under microgravity conditions: basal face growth rate and tip velocity of a dendrite.
    Yokoyama E; Yoshizaki I; Shimaoka T; Sone T; Kiyota T; Furukawa Y
    J Phys Chem B; 2011 Jul; 115(27):8739-45. PubMed ID: 21631108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of supercooling activity of tannin-related polyphenols.
    Kuwabara C; Wang D; Endoh K; Fukushi Y; Arakawa K; Fujikawa S
    Cryobiology; 2013 Aug; 67(1):40-9. PubMed ID: 23644016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.