BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22181194)

  • 1. Exciton transfer dynamics and quantumness of energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Braun D; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041926. PubMed ID: 22181194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Mujica-Martinez CA; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022706. PubMed ID: 25768530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of non-Markovian effects in the Fenna-Matthews-Olson complex.
    Mujica-Martinez CA; Nalbach P; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062719. PubMed ID: 24483498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface.
    Higashi M; Saito S
    J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equivalence of quantum and classical coherence in electronic energy transfer.
    Briggs JS; Eisfeld A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051911. PubMed ID: 21728575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control.
    Fransted KA; Caram JR; Hayes D; Engel GS
    J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak shape analysis of diagonal and off-diagonal features in the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex.
    Hayes D; Engel GS
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3692-708. PubMed ID: 22753821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient estimation of energy transfer efficiency in light-harvesting complexes.
    Shabani A; Mohseni M; Rabitz H; Lloyd S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011915. PubMed ID: 23005460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex.
    Cui X; Yan Y; Wei J
    J Phys Chem B; 2021 Nov; 125(43):11884-11892. PubMed ID: 34669415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
    Dawlaty JM; Ishizaki A; De AK; Fleming GR
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environment-assisted quantum walks in photosynthetic energy transfer.
    Mohseni M; Rebentrost P; Lloyd S; Aspuru-Guzik A
    J Chem Phys; 2008 Nov; 129(17):174106. PubMed ID: 19045332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explicit correlated exciton-vibrational dynamics of the FMO complex.
    Schulze J; Kühn O
    J Phys Chem B; 2015 May; 119(20):6211-6. PubMed ID: 25927682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.
    Sato Y; Doolittle B
    J Chem Phys; 2014 Nov; 141(18):185102. PubMed ID: 25399162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.
    Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U
    J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
    Jurinovich S; Curutchet C; Mennucci B
    Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial propagation of excitonic coherence enables ratcheted energy transfer.
    Hoyer S; Ishizaki A; Whaley KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041911. PubMed ID: 23214619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting.
    Huo P; Coker DF
    J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation.
    Abramavicius V; Abramavicius D
    J Chem Phys; 2014 Feb; 140(6):065103. PubMed ID: 24527939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of energy transport in the Fenna-Matthews-Olson complex via site-varying pigment-protein interactions.
    Oh SA; Coker DF; Hutchinson DAW
    J Chem Phys; 2019 Feb; 150(8):085102. PubMed ID: 30823745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex.
    Kim HW; Kelly A; Park JW; Rhee YM
    J Am Chem Soc; 2012 Jul; 134(28):11640-51. PubMed ID: 22708971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.