These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 22181207)
1. Packing fraction of geometric random packings of discretely sized particles. Brouwers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):042301. PubMed ID: 22181207 [TBL] [Abstract][Full Text] [Related]
2. Packing fraction of trimodal spheres with small size ratio: an analytical expression. Brouwers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032204. PubMed ID: 24125258 [TBL] [Abstract][Full Text] [Related]
3. Particle-size distribution and packing fraction of geometric random packings. Brouwers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031309. PubMed ID: 17025625 [TBL] [Abstract][Full Text] [Related]
4. Statistical characterization of microstructure of packings of polydisperse hard cubes. Malmir H; Sahimi M; Rahimi Tabar MR Phys Rev E; 2017 May; 95(5-1):052902. PubMed ID: 28618643 [TBL] [Abstract][Full Text] [Related]
5. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities. Hopkins AB; Stillinger FH; Torquato S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022205. PubMed ID: 24032826 [TBL] [Abstract][Full Text] [Related]
6. Maximally random jammed packings of Platonic solids: hyperuniform long-range correlations and isostaticity. Jiao Y; Torquato S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041309. PubMed ID: 22181137 [TBL] [Abstract][Full Text] [Related]
7. A geometric probabilistic approach to random packing of hard disks in a plane. Brouwers HJH Soft Matter; 2023 Nov; 19(43):8465-8471. PubMed ID: 37887436 [TBL] [Abstract][Full Text] [Related]
8. Structural and Micromechanical Properties of Ternary Granular Packings: Effect of Particle Size Ratio and Number Fraction of Particle Size Classes. Wiącek J; Stasiak M; Kafashan J Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31940774 [TBL] [Abstract][Full Text] [Related]
9. Adhesive loose packings of small dry particles. Liu W; Li S; Baule A; Makse HA Soft Matter; 2015 Aug; 11(32):6492-8. PubMed ID: 26186271 [TBL] [Abstract][Full Text] [Related]
10. Packing of crystalline structures of binary hard spheres: an analytical approach and application to amorphization. Brouwers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041304. PubMed ID: 17994978 [TBL] [Abstract][Full Text] [Related]
11. Model of random packings of different size balls. Danisch M; Jin Y; Makse HA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051303. PubMed ID: 20866222 [TBL] [Abstract][Full Text] [Related]
12. Densest local sphere-packing diversity. II. Application to three dimensions. Hopkins AB; Stillinger FH; Torquato S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011304. PubMed ID: 21405690 [TBL] [Abstract][Full Text] [Related]
13. Influence of particle size distribution on random close packing of spheres. Desmond KW; Weeks ER Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022204. PubMed ID: 25215730 [TBL] [Abstract][Full Text] [Related]
14. Packing and self-assembly of truncated triangular bipyramids. Haji-Akbari A; Chen ER; Engel M; Glotzer SC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012127. PubMed ID: 23944434 [TBL] [Abstract][Full Text] [Related]
15. Geometrical properties of rigid frictionless granular packings as a function of particle size and shape. Camenen JF; Descantes Y Phys Rev E; 2017 Jul; 96(1-1):012904. PubMed ID: 29347220 [TBL] [Abstract][Full Text] [Related]
16. Mean-field theory of random close packings of axisymmetric particles. Baule A; Mari R; Bo L; Portal L; Makse HA Nat Commun; 2013; 4():2194. PubMed ID: 23877324 [TBL] [Abstract][Full Text] [Related]
17. Densest packings from size segregation of particles in geometric confinement. Lv X; Chan HK Phys Rev E; 2022 Oct; 106(4):L042902. PubMed ID: 36397520 [TBL] [Abstract][Full Text] [Related]
18. Organizing principles for dense packings of nonspherical hard particles: not all shapes are created equal. Torquato S; Jiao Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011102. PubMed ID: 23005363 [TBL] [Abstract][Full Text] [Related]
19. Packing fraction of particles with a Weibull size distribution. Brouwers HJ Phys Rev E; 2016 Jul; 94(1-1):012905. PubMed ID: 27575204 [TBL] [Abstract][Full Text] [Related]
20. Geometrical cluster ensemble analysis of random sphere packings. Wouterse A; Philipse AP J Chem Phys; 2006 Nov; 125(19):194709. PubMed ID: 17129152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]