These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22181249)

  • 1. Collective phase description of globally coupled excitable elements.
    Kawamura Y; Nakao H; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046211. PubMed ID: 22181249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective phase reduction of globally coupled noisy dynamical elements.
    Kawamura Y
    Phys Rev E; 2017 Mar; 95(3-1):032225. PubMed ID: 28415367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-induced dynamical regimes in a system of globally coupled excitable units.
    Klinshov VV; Kirillov SY; Nekorkin VI; Wolfrum M
    Chaos; 2021 Aug; 31(8):083103. PubMed ID: 34470239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective phase description of oscillatory convection.
    Kawamura Y; Nakao H
    Chaos; 2013 Dec; 23(4):043129. PubMed ID: 24387568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators.
    Klinshov V; Franović I
    Phys Rev E; 2019 Dec; 100(6-1):062211. PubMed ID: 31962480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative dynamics in a class of coupled two-dimensional oscillators.
    Acebrón JA; Rappel WJ; Bulsara AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016210. PubMed ID: 12636588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noisy FitzHugh-Nagumo model: from single elements to globally coupled networks.
    Acebrón JA; Bulsara AR; Rappel WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026202. PubMed ID: 14995543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons.
    Ratas I; Pyragas K
    Phys Rev E; 2019 Nov; 100(5-1):052211. PubMed ID: 31869871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of globally connected active rotators with excitatory and inhibitory connections using the Fokker-Planck equation.
    Kanamaru T; Sekine M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031916. PubMed ID: 12689110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase reduction and synchronization of a network of coupled dynamical elements exhibiting collective oscillations.
    Nakao H; Yasui S; Ota M; Arai K; Kawamura Y
    Chaos; 2018 Apr; 28(4):045103. PubMed ID: 31906627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation.
    Kotani K; Yamaguchi I; Yoshida L; Jimbo Y; Ermentrout GB
    J R Soc Interface; 2014 Jun; 11(95):20140058. PubMed ID: 24647906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.
    Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pair of excitable FitzHugh-Nagumo elements: synchronization, multistability, and chaos.
    Yanagita T; Ichinomiya T; Oyama Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056218. PubMed ID: 16383738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective phase sensitivity.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Phys Rev Lett; 2008 Jul; 101(2):024101. PubMed ID: 18764182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Markovian approach to globally coupled excitable systems.
    Prager T; Falcke M; Schimansky-Geier L; Zaks MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011118. PubMed ID: 17677421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise induced complexity: from subthreshold oscillations to spiking in coupled excitable systems.
    Zaks MA; Sailer X; Schimansky-Geier L; Neiman AB
    Chaos; 2005 Jun; 15(2):26117. PubMed ID: 16035919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensembles of excitable two-state units with delayed feedback.
    Kouvaris N; Müller F; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061124. PubMed ID: 21230661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback.
    Gaudreault M; Drolet F; Viñals J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051124. PubMed ID: 21230454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.