These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22181263)

  • 21. Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022501. PubMed ID: 16196615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wall-mass effects on hydrodynamic boundary slip.
    Asproulis N; Drikakis D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031504. PubMed ID: 22060376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cylindrical Couette flow of a rarefied gas: Effect of a boundary condition on the inverted velocity profile.
    Kosuge S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013013. PubMed ID: 26274275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boundary conditions at the liquid-liquid interface in the presence of surfactants.
    Hu Y; Zhang X; Wang W
    Langmuir; 2010 Jul; 26(13):10693-702. PubMed ID: 20507080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluid mechanics in fluids at rest.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016307. PubMed ID: 23005525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rate-dependent slip boundary conditions for simple fluids.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051605. PubMed ID: 17677076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apparent slip over a solid-liquid interface with a no-slip boundary condition.
    Zhang J; Kwok DY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056701. PubMed ID: 15600790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Velocity slip on curved surfaces.
    Chen W; Zhang R; Koplik J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023005. PubMed ID: 25353569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme.
    Yang L; Yu Y; Yang L; Hou G
    Phys Rev E; 2020 Feb; 101(2-1):023312. PubMed ID: 32168627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow.
    Gupta R; Alam M
    Phys Rev E; 2017 Feb; 95(2-1):022903. PubMed ID: 28297874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broadside mobility of a disk in a viscous fluid near a plane wall with no-slip boundary condition.
    Felderhof BU
    J Chem Phys; 2012 Aug; 137(8):084906. PubMed ID: 22938264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanofluidics of thin polymer films: linking the slip boundary condition at solid-liquid interfaces to macroscopic pattern formation and microscopic interfacial properties.
    McGraw JD; Bäumchen O; Klos M; Haefner S; Lessel M; Backes S; Jacobs K
    Adv Colloid Interface Sci; 2014 Aug; 210():13-20. PubMed ID: 24780402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces.
    Nguyen QT; Papavassiliou DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063015. PubMed ID: 24483565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel.
    Lee T; Lin CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046706. PubMed ID: 15903817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Filter-matrix lattice Boltzmann model for microchannel gas flows.
    Zhuo C; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol.
    Jing D; Bhushan B
    Langmuir; 2013 Nov; 29(47):14691-700. PubMed ID: 24168076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature dependence of the velocity boundary condition for nanoscale fluid flows.
    Guo Z; Zhao TS; Shi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036301. PubMed ID: 16241565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.