These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22181268)

  • 1. Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes.
    Chen C; Ma M; Jin K; Liu JZ; Shen L; Zheng Q; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046314. PubMed ID: 22181268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-induced dynamics of carbon nanotubes.
    Chen C; Xu Z
    Nanoscale; 2011 Oct; 3(10):4383-8. PubMed ID: 21909582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag on a nanotube in uniform liquid argon flow.
    Tang W; Advani SG
    J Chem Phys; 2006 Nov; 125(17):174706. PubMed ID: 17100460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative effect of nanoconfinement on water transport across nanotube membranes.
    Zhao K; Wu H; Han B
    J Chem Phys; 2017 Oct; 147(16):164705. PubMed ID: 29096476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotubes as Thermally Induced Water Pumps.
    Oyarzua E; Walther JH; Megaridis CM; Koumoutsakos P; Zambrano HA
    ACS Nano; 2017 Oct; 11(10):9997-10002. PubMed ID: 28953353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam.
    Khosravian N; Rafii-Tabar H
    Nanotechnology; 2008 Jul; 19(27):275703. PubMed ID: 21828715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes.
    Babu JS; Sathian SP
    J Chem Phys; 2011 May; 134(19):194509. PubMed ID: 21599075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.
    Vuković L; Vokac E; Král P
    J Phys Chem Lett; 2014 Jun; 5(12):2131-7. PubMed ID: 26270504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic properties of carbon nanotubes.
    Walther JH; Werder T; Jaffe RL; Koumoutsakos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062201. PubMed ID: 15244641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.
    Ma M; Grey F; Shen L; Urbakh M; Wu S; Liu JZ; Liu Y; Zheng Q
    Nat Nanotechnol; 2015 Aug; 10(8):692-5. PubMed ID: 26149236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations.
    Sokoloff JB
    Phys Rev E; 2018 Mar; 97(3-1):033107. PubMed ID: 29776023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Massive radius-dependent flow slippage in carbon nanotubes.
    Secchi E; Marbach S; Niguès A; Stein D; Siria A; Bocquet L
    Nature; 2016 Sep; 537(7619):210-3. PubMed ID: 27604947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Vibration of a Linear Carbon Chain in Carbon Nanotubes.
    Ding D; Zhao Y; Dong S; Yu P; Wang L; Zhao J
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability and confinement size effects on stability of water conveying nanotubes.
    Shaat M; Javed U; Faroughi S
    Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes.
    Majumder M; Chopra N; Andrews R; Hinds BJ
    Nature; 2005 Nov; 438(7064):44. PubMed ID: 16267546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water flow in carbon nanotubes: the role of tube chirality.
    Sam A; K VP; Sathian SP
    Phys Chem Chem Phys; 2019 Mar; 21(12):6566-6573. PubMed ID: 30849155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy transfer from a fluorophore to single-walled carbon nanotubes.
    Swathi RS; Sebastian KL
    J Chem Phys; 2010 Mar; 132(10):104502. PubMed ID: 20232966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.
    Zhang X; Li Q
    ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic simulations on nanoimprinting of copper by aligned carbon nanotube arrays under a high-frequency mechanical vibration.
    Li L; Xia Z; Yang Y; Yuan MN
    Nanotechnology; 2020 Jan; 31(4):045303. PubMed ID: 31561243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.