These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22181268)

  • 21. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells.
    Bernardi M; Giulianini M; Grossman JC
    ACS Nano; 2010 Nov; 4(11):6599-606. PubMed ID: 21028847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics of transient oil flows in nanopores I: Imbibition speeds for single wall carbon nanotubes.
    Supple S; Quirke N
    J Chem Phys; 2004 Nov; 121(17):8571-9. PubMed ID: 15511182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of oil flow in shale nanopores by manipulating friction and viscosity.
    Ho TA; Wang Y
    Phys Chem Chem Phys; 2019 Jun; 21(24):12777-12786. PubMed ID: 31120076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory.
    Lee HL; Chang WJ
    J Phys Condens Matter; 2009 Mar; 21(11):115302. PubMed ID: 21693915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications.
    Hu S; Xia Z; Gao X
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1972-80. PubMed ID: 22404041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment.
    Shim JS; Yun YH; Rust MJ; Do J; Shanov V; Schulz MJ; Ahn CH
    Nanotechnology; 2009 Aug; 20(32):325607. PubMed ID: 19620765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.
    Lim MC; Zhong ZW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041915. PubMed ID: 19905350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast Permeation of Small Ions in Carbon Nanotubes.
    Buchsbaum SF; Jue ML; Sawvel AM; Chen C; Meshot ER; Park SJ; Wood M; Wu KJ; Bilodeau CL; Aydin F; Pham TA; Lau EY; Fornasiero F
    Adv Sci (Weinh); 2021 Feb; 8(3):2001802. PubMed ID: 33552850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoinduced Dynamics in Carbon Nanotube Aggregates Steered by Dark Excitons.
    Postupna O; Jaeger HM; Prezhdo OV
    J Phys Chem Lett; 2014 Nov; 5(21):3872-7. PubMed ID: 26278762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How fast does water flow in carbon nanotubes?
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pumping of water by rotating chiral carbon nanotube.
    Feng JW; Ding HM; Ren CL; Ma YQ
    Nanoscale; 2014 Nov; 6(22):13606-12. PubMed ID: 25271402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method.
    Choi TY; Maneshian MH; Kang B; Chang WS; Han CS; Poulikakos D
    Nanotechnology; 2009 Aug; 20(31):315706. PubMed ID: 19597251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear dependence of surface drag on surface viscosity.
    Alonso C; Zasadzinski JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021602. PubMed ID: 14995453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P; Ali SM; Shenoy KT
    J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drag reduction in the turbulent Kolmogorov flow.
    Boffetta G; Celani A; Mazzino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036307. PubMed ID: 15903574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast mass transport-assisted convective heat transfer through a multi-walled carbon nanotube array.
    Jeon W; Kim T; Kim SM; Baik S
    Nanoscale; 2018 Dec; 10(48):23103-23112. PubMed ID: 30511712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.