These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22181315)

  • 1. Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization.
    Gan Y; Xu A; Zhang G; Li Y; Li H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046715. PubMed ID: 22181315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion.
    Heping W; Xingguo G; Xiaoguang L; Duyang Z
    Eur Phys J E Soft Matter; 2016 Oct; 39(10):102. PubMed ID: 27783224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Boltzmann model for thermal binary-mixture gas flows.
    Kang J; Prasianakis NI; Mantzaras J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053304. PubMed ID: 23767654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature on spinodal decomposition and domain growth of liquid-vapor systems with smoothed particle hydrodynamics.
    Pütz M; Nielaba P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032303. PubMed ID: 25871106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method.
    Wang H; Zang D; Li X; Geng X
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):115. PubMed ID: 29274072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
    Jiang H; Dou N; Fan G; Yang Z; Zhang X
    J Chem Phys; 2013 Sep; 139(12):124903. PubMed ID: 24089800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Master crossover behavior of parachor correlations for one-component fluids.
    Garrabos Y; Palencia F; Lecoutre C; Broseta D; Le Neindre B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061109. PubMed ID: 18233816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and initial composition dependence of pattern formation and dynamic behavior in phase separation under deep-quenched conditions.
    Zhang L; Peng Y; Zhang L; Lei X; Yao W; Wang N
    RSC Adv; 2019 Apr; 9(19):10670-10678. PubMed ID: 35515277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropy production in thermal phase separation: a kinetic-theory approach.
    Zhang Y; Xu A; Zhang G; Gan Y; Chen Z; Succi S
    Soft Matter; 2019 Mar; 15(10):2245-2259. PubMed ID: 30762056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.
    Wiese S; Teutenberg T; Schmidt TC
    J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-separating binary fluids under oscillatory shear.
    Xu A; Gonnella G; Lamura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056105. PubMed ID: 12786218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.
    Fillaudeau L; Winterton P; Leuliet JC; Tissier JP; Maury V; Semet F; Debreyne P; Berthou M; Chopard F
    J Dairy Sci; 2006 Dec; 89(12):4475-89. PubMed ID: 17106078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.
    Amiri Delouei A; Nazari M; Kayhani MH; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053312. PubMed ID: 25353919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic nanoconfinement suppresses fluctuations in supercooled water.
    Strekalova EG; Mazza MG; Stanley HE; Franzese G
    J Phys Condens Matter; 2012 Feb; 24(6):064111. PubMed ID: 22277682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid.
    Testard V; Berthier L; Kob W
    J Chem Phys; 2014 Apr; 140(16):164502. PubMed ID: 24784282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method.
    Ghazanfarian J; Abbassi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026307. PubMed ID: 20866905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial thermal conduction and negative temperature jump in one-dimensional lattices.
    Cao X; He D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032135. PubMed ID: 26465454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence kinetics in surfactant stabilized emulsions: evolution equations from direct numerical simulations.
    Skartlien R; Grimes B; Meakin P; Sjöblom J; Sollum E
    J Chem Phys; 2012 Dec; 137(21):214701. PubMed ID: 23231250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth regimes in three-dimensional phase separation of liquid-vapor systems.
    Negro G; Gonnella G; Lamura A; Busuioc S; Sofonea V
    Phys Rev E; 2024 Jan; 109(1-2):015305. PubMed ID: 38366419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal determination of the Avrami exponent.
    Pas SJ; Dargusch MS; MacFarlane DR
    Phys Chem Chem Phys; 2011 Jul; 13(25):12033-40. PubMed ID: 21625708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.