These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 22181405)
1. Equation for the force experienced by a wall overflowed by a granular avalanche: experimental verification. Faug T; Caccamo P; Chanut B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051301. PubMed ID: 22181405 [TBL] [Abstract][Full Text] [Related]
2. Time-varying force from dense granular avalanches on a wall. Chanut B; Faug T; Naaim M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041302. PubMed ID: 21230268 [TBL] [Abstract][Full Text] [Related]
3. Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Faug T; Beguin R; Chanut B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021305. PubMed ID: 19792117 [TBL] [Abstract][Full Text] [Related]
4. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations. Albaba A; Lambert S; Faug T Phys Rev E; 2018 May; 97(5-1):052903. PubMed ID: 29906957 [TBL] [Abstract][Full Text] [Related]
5. Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Ancey C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011304. PubMed ID: 11800690 [TBL] [Abstract][Full Text] [Related]
6. Mean force and fluctuations on a wall immersed in a sheared granular flow. Kneib F; Faug T; Dufour F; Naaim M Phys Rev E; 2019 May; 99(5-1):052901. PubMed ID: 31212502 [TBL] [Abstract][Full Text] [Related]
7. Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Pudasaini SP; Kröner C Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041308. PubMed ID: 18999419 [TBL] [Abstract][Full Text] [Related]
8. Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method. Wu F; Fan Y; Liang L; Wang C PLoS One; 2016; 11(8):e0160756. PubMed ID: 27513661 [TBL] [Abstract][Full Text] [Related]
9. Numerical tests of constitutive laws for dense granular flows. Lois G; Lemaître A; Carlson JM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051303. PubMed ID: 16383599 [TBL] [Abstract][Full Text] [Related]
10. Force fluctuations on a wall in interaction with a granular lid-driven cavity flow. Kneib F; Faug T; Nicolet G; Eckert N; Naaim M; Dufour F Phys Rev E; 2017 Oct; 96(4-1):042906. PubMed ID: 29347536 [TBL] [Abstract][Full Text] [Related]
11. Shallow granular flows. Takagi D; McElwaine JN; Huppert HE Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031306. PubMed ID: 21517493 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of granular avalanches caused by local perturbations. Emig T; Claudin P; Bouchaud JP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031305. PubMed ID: 15903424 [TBL] [Abstract][Full Text] [Related]
13. Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Koval G; Roux JN; Corfdir A; Chevoir F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021306. PubMed ID: 19391738 [TBL] [Abstract][Full Text] [Related]
14. Laboratory experiment and discrete-element-method simulation of granular-heap flows under vertical vibration. Tsuji D; Otsuki M; Katsuragi H Phys Rev E; 2019 Jun; 99(6-1):062902. PubMed ID: 31330738 [TBL] [Abstract][Full Text] [Related]
15. Hysteresis in a hydrodynamic model of dense granular flows. Artoni R; Santomaso A; Canu P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051304. PubMed ID: 21728522 [TBL] [Abstract][Full Text] [Related]
16. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Sengupta TK; Bhaumik S; Bhumkar YG Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318 [TBL] [Abstract][Full Text] [Related]
17. Nonlocal rheological properties of granular flows near a jamming limit. Aranson IS; Tsimring LS; Malloggi F; Clément E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031303. PubMed ID: 18851027 [TBL] [Abstract][Full Text] [Related]
19. Evidence of reverse and intermediate size segregation in dry granular flows down a rough incline. Thomas N; D'Ortona U Phys Rev E; 2018 Feb; 97(2-1):022903. PubMed ID: 29548154 [TBL] [Abstract][Full Text] [Related]
20. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data. Nesarikar VV; Patel C; Early W; Vatsaraj N; Sprockel O; Jerzweski R Int J Pharm; 2012 Oct; 436(1-2):486-507. PubMed ID: 22721851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]