These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 22181416)
1. Friction contribution to water-bond breakage kinetics. von Hansen Y; Sedlmeier F; Hinczewski M; Netz RR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051501. PubMed ID: 22181416 [TBL] [Abstract][Full Text] [Related]
2. Peptide chain dynamics in light and heavy water: zooming in on internal friction. Schulz JC; Schmidt L; Best RB; Dzubiella J; Netz RR J Am Chem Soc; 2012 Apr; 134(14):6273-9. PubMed ID: 22414068 [TBL] [Abstract][Full Text] [Related]
3. How the diffusivity profile reduces the arbitrariness of protein folding free energies. Hinczewski M; von Hansen Y; Dzubiella J; Netz RR J Chem Phys; 2010 Jun; 132(24):245103. PubMed ID: 20590217 [TBL] [Abstract][Full Text] [Related]
4. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study. Berkelbach TC; Lee HS; Tuckerman ME Phys Rev Lett; 2009 Dec; 103(23):238302. PubMed ID: 20366181 [TBL] [Abstract][Full Text] [Related]
5. Are hydrodynamic interactions important in the kinetics of hydrophobic collapse? Li J; Morrone JA; Berne BJ J Phys Chem B; 2012 Sep; 116(37):11537-44. PubMed ID: 22931395 [TBL] [Abstract][Full Text] [Related]
6. Semiquantal molecular dynamics simulations of hydrogen-bond dynamics in liquid water using multi-dimensional Gaussian wave packets. Ono J; Ando K J Chem Phys; 2012 Nov; 137(17):174503. PubMed ID: 23145735 [TBL] [Abstract][Full Text] [Related]
7. Structural properties of hydration shell around various conformations of simple polypeptides. Czapiewski D; Zielkiewicz J J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827 [TBL] [Abstract][Full Text] [Related]
8. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water. Henchman RH; Irudayam SJ J Phys Chem B; 2010 Dec; 114(50):16792-810. PubMed ID: 21114302 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen-bond dynamics in the air-water interface. Liu P; Harder E; Berne BJ J Phys Chem B; 2005 Feb; 109(7):2949-55. PubMed ID: 16851308 [TBL] [Abstract][Full Text] [Related]
10. Semi-bottom-up coarse graining of water based on microscopic simulations. Gao L; Fang W J Chem Phys; 2011 Nov; 135(18):184101. PubMed ID: 22088046 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics study of water penetration in staphylococcal nuclease. Damjanović A; García-Moreno B; Lattman EE; García AE Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206 [TBL] [Abstract][Full Text] [Related]
12. Non-Markovian modeling of protein folding. Ayaz C; Tepper L; Brünig FN; Kappler J; Daldrop JO; Netz RR Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326249 [TBL] [Abstract][Full Text] [Related]
14. The changing hydrogen-bond network of water from the bulk to the surface of a cluster: a born-oppenheimer molecular dynamics study. Galamba N; Cabral BJ J Am Chem Soc; 2008 Dec; 130(52):17955-60. PubMed ID: 19049430 [TBL] [Abstract][Full Text] [Related]
16. Butane dihedral angle dynamics in water is dominated by internal friction. Daldrop JO; Kappler J; Brünig FN; Netz RR Proc Natl Acad Sci U S A; 2018 May; 115(20):5169-5174. PubMed ID: 29712838 [TBL] [Abstract][Full Text] [Related]
17. Direct assessment of quantum nuclear effects on hydrogen bond strength by constrained-centroid ab initio path integral molecular dynamics. Walker B; Michaelides A J Chem Phys; 2010 Nov; 133(17):174306. PubMed ID: 21054031 [TBL] [Abstract][Full Text] [Related]
18. Proline induced disruption of the structure and dynamics of water. Yu D; Hennig M; Mole RA; Li JC; Wheeler C; Strässle T; Kearley GJ Phys Chem Chem Phys; 2013 Dec; 15(47):20555-64. PubMed ID: 24177249 [TBL] [Abstract][Full Text] [Related]
19. Free energetics and the role of water in the permeation of methyl guanidinium across the bilayer-water interface: insights from molecular dynamics simulations using charge equilibration potentials. Ou S; Lucas TR; Zhong Y; Bauer BA; Hu Y; Patel S J Phys Chem B; 2013 Apr; 117(13):3578-92. PubMed ID: 23409975 [TBL] [Abstract][Full Text] [Related]
20. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding. Joly L; Tocci G; Merabia S; Michaelides A J Phys Chem Lett; 2016 Apr; 7(7):1381-6. PubMed ID: 27012818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]