These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22181436)

  • 1. Numerical simulation methods for the Rouse model in flow.
    Howard MP; Milner ST
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051804. PubMed ID: 22181436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite Patankar-Euler methods for positive simulations of stochastic differential equation models for biological regulatory systems.
    Chen A; Zhou T; Burrage P; Tian T; Burrage K
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear and non-linear dynamics of entangled linear polymer melts by modified tunable coarse-grained level dissipative particle dynamics.
    Yamanoi M; Pozo O; Maia JM
    J Chem Phys; 2011 Jul; 135(4):044904. PubMed ID: 21806158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit analytical form for memory kernel in the generalized Langevin equation for end-to-end vector of Rouse chains.
    Tian X; Xu X; Chen Y; Chen J; Xu WS
    J Chem Phys; 2022 Dec; 157(22):224901. PubMed ID: 36546812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rouse-Mooney model for coherent quasielastic neutron scatterings of single chains well entangled in polymer melts.
    Lin YH; Huang CF
    J Chem Phys; 2008 Jun; 128(22):224903. PubMed ID: 18554049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statics, linear, and nonlinear dynamics of entangled polystyrene melts simulated through the primitive chain network model.
    Yaoita T; Isaki T; Masubuchi Y; Watanabe H; Ianniruberto G; Greco F; Marrucci G
    J Chem Phys; 2008 Apr; 128(15):154901. PubMed ID: 18433271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.
    Zhang L
    J Inequal Appl; 2017; 2017(1):249. PubMed ID: 29070932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From intermediate anisotropic to isotropic friction at large strain rates to account for viscosity thickening in polymer solutions.
    Stephanou PS; Kröger M
    J Chem Phys; 2018 May; 148(18):184903. PubMed ID: 29764144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple, Accurate and User-Friendly Differential Constitutive Model for the Rheology of Entangled Polymer Melts and Solutions from Nonequilibrium Thermodynamics.
    S Stephanou P; Ch Tsimouri I; G Mavrantzas V
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of stress relaxation of entanglement-free Fraenkel chains. I. Linear polymer viscoelasticity.
    Lin YH; Das AK
    J Chem Phys; 2007 Feb; 126(7):074902. PubMed ID: 17328629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical and simulation results for the stochastic spatial Fitzhugh-Nagumo model neuron.
    Tuckwell HC
    Neural Comput; 2008 Dec; 20(12):3003-33. PubMed ID: 18624663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-chain slip-spring model for entangled polymer dynamics.
    Uneyama T; Masubuchi Y
    J Chem Phys; 2012 Oct; 137(15):154902. PubMed ID: 23083186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic dynamo model for subcritical transition.
    Fedotov S; Bashkirtseva I; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066307. PubMed ID: 16906976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulational Tests of the Rouse Model.
    Phillies GDJ
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balanced implicit Patankar-Euler methods for positive solutions of stochastic differential equations of biological regulatory systems.
    Chen A; Ren Q; Zhou T; Burrage P; Tian T; Burrage K
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38353308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solutions of a disease model with fractional white noise.
    Akinlar MA; Inc M; Gómez-Aguilar JF; Boutarfa B
    Chaos Solitons Fractals; 2020 Aug; 137():109840. PubMed ID: 32355423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems.
    Zhao S; Ovadia J; Liu X; Zhang YT; Nie Q
    J Comput Phys; 2011 Jul; 230(15):5996-6009. PubMed ID: 21666863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.