These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22181471)

  • 1. Identifying the starting point of a spreading process in complex networks.
    Comin CH; Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056105. PubMed ID: 22181471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of centrality for the identification of influential spreaders in complex networks.
    de Arruda GF; Barbieri AL; Rodríguez PM; Rodrigues FA; Moreno Y; Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032812. PubMed ID: 25314487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biologically inspired immunization strategy for network epidemiology.
    Liu Y; Deng Y; Jusup M; Wang Z
    J Theor Biol; 2016 Jul; 400():92-102. PubMed ID: 27113785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Range-limited centrality measures in complex networks.
    Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressing traffic-driven epidemic spreading by edge-removal strategies.
    Yang HX; Wu ZX; Wang BH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):064801. PubMed ID: 23848813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An individual-based approach to SIR epidemics in contact networks.
    Youssef M; Scoglio C
    J Theor Biol; 2011 Aug; 283(1):136-44. PubMed ID: 21663750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemic spreading on interconnected networks.
    Saumell-Mendiola A; Serrano MÁ; Boguñá M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026106. PubMed ID: 23005824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interacting epidemics on overlay networks.
    Funk S; Jansen VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036118. PubMed ID: 20365826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual reasoning about social networks using centrality sensitivity.
    Correa CD; Crnovrsanin T; Ma KL
    IEEE Trans Vis Comput Graph; 2012 Jan; 18(1):106-20. PubMed ID: 22076488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of network clustering and assortativity on epidemic behaviour.
    Badham J; Stocker R
    Theor Popul Biol; 2010 Feb; 77(1):71-5. PubMed ID: 19948179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a methodology for validation of centrality measures in complex networks.
    Batool K; Niazi MA
    PLoS One; 2014; 9(4):e90283. PubMed ID: 24709999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Error and attack vulnerability of temporal networks.
    Trajanovski S; Scellato S; Leontiadis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066105. PubMed ID: 23005160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast computing betweenness centrality with virtual nodes on large sparse networks.
    Yang J; Chen Y
    PLoS One; 2011; 6(7):e22557. PubMed ID: 21818337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying influential spreaders in complex networks for disease spread and control.
    Wei X; Zhao J; Liu S; Wang Y
    Sci Rep; 2022 Apr; 12(1):5550. PubMed ID: 35365715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and prediction of nutritional requirements using structural properties of metabolic networks and support vector machines.
    Tamura T; Christian N; Takemoto K; Ebenhöh O; Akutsu T
    Genome Inform; 2010 Jan; 22():176-90. PubMed ID: 20238428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk perception in epidemic modeling.
    Bagnoli F; Liò P; Sguanci L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061904. PubMed ID: 18233866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bio-inspired methodology of identifying influential nodes in complex networks.
    Gao C; Lan X; Zhang X; Deng Y
    PLoS One; 2013; 8(6):e66732. PubMed ID: 23799129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-free networks as entropy competition.
    Sanchirico A; Fiorentino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046114. PubMed ID: 18999500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks.
    Qiao T; Shan W; Yu G; Liu C
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network evolution based on centrality.
    König MD; Tessone CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056108. PubMed ID: 22181474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.