These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22181471)

  • 21. A socially aware routing based on local contact information in delay-tolerant networks.
    Kim CM; Han YH; Youn JS; Jeong YS
    ScientificWorldJournal; 2014; 2014():408676. PubMed ID: 25143978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epidemics on a weighted network with tunable degree-degree correlation.
    Lopes FM
    Math Biosci; 2014 Jul; 253():40-9. PubMed ID: 24721555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying influential nodes in large-scale directed networks: the role of clustering.
    Chen DB; Gao H; Lü L; Zhou T
    PLoS One; 2013; 8(10):e77455. PubMed ID: 24204833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying node role in social network based on multiple indicators.
    Huang S; Lv T; Zhang X; Yang Y; Zheng W; Wen C
    PLoS One; 2014; 9(8):e103733. PubMed ID: 25089823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spreading gossip in social networks.
    Lind PG; da Silva LR; Andrade JS; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036117. PubMed ID: 17930316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lexical sorting centrality to distinguish spreading abilities of nodes in complex networks under the Susceptible-Infectious-Recovered (SIR) model.
    Şimşek A
    J King Saud Univ Comput Inf Sci; 2022 Sep; 34(8):4810-4820. PubMed ID: 38620758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of relative influence of nodes in directed networks.
    Masuda N; Kawamura Y; Kori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046114. PubMed ID: 19905397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal node centrality in complex networks.
    Kim H; Anderson R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026107. PubMed ID: 22463279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of important nodes in directed biological networks: a network motif approach.
    Wang P; Lü J; Yu X
    PLoS One; 2014; 9(8):e106132. PubMed ID: 25170616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.
    Ding R; Ujang N; Hamid HB; Wu J
    PLoS One; 2015; 10(10):e0139961. PubMed ID: 26448645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks.
    Piraveenan M; Prokopenko M; Hossain L
    PLoS One; 2013; 8(1):e53095. PubMed ID: 23349699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors that predict better synchronizability on complex networks.
    Hong H; Kim BJ; Choi MY; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):067105. PubMed ID: 15244784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subgraph centrality in complex networks.
    Estrada E; Rodríguez-Velázquez JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056103. PubMed ID: 16089598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and evolution of structurally dominant nodes in protein-protein interaction networks.
    Wang P; Yu X; Lü J
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):87-97. PubMed ID: 24681922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Damage spreading in spatial and small-world random Boolean networks.
    Lu Q; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022806. PubMed ID: 25353533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond ranking nodes: Predicting epidemic outbreak sizes by network centralities.
    Bucur D; Holme P
    PLoS Comput Biol; 2020 Jul; 16(7):e1008052. PubMed ID: 32697781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using LTI Dynamics to Identify the Influential Nodes in a Network.
    Murić G; Jorswieck E; Scheunert C
    PLoS One; 2016; 11(12):e0168514. PubMed ID: 28030548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalized walks-based centrality measures for complex biological networks.
    Estrada E
    J Theor Biol; 2010 Apr; 263(4):556-65. PubMed ID: 20085771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Node importance for dynamical process on networks: a multiscale characterization.
    Zhang J; Xu XK; Li P; Zhang K; Small M
    Chaos; 2011 Mar; 21(1):016107. PubMed ID: 21456849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.