These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22181492)

  • 1. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.
    Nick HM; Paluszny A; Blunt MJ; Matthai SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056301. PubMed ID: 22181492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fracture compliance on wave propagation within a fluid-filled fracture.
    Nakagawa S; Korneev VA
    J Acoust Soc Am; 2014 Jun; 135(6):3186-97. PubMed ID: 24907784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved geomechanical model for the prediction of fracture generation and distribution in brittle reservoirs.
    Feng J; Li L; Jin J; Dai J; Luo P
    PLoS One; 2018; 13(11):e0205958. PubMed ID: 30403681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture.
    Novakowski KS; Bickerton G; Lapcevic P
    J Contam Hydrol; 2004 Sep; 73(1-4):227-47. PubMed ID: 15336796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.
    Bodin J; Porel G; Delay F; Ubertosi F; Bernard S; de Dreuzy JR
    J Contam Hydrol; 2007 Jan; 89(1-2):1-28. PubMed ID: 16962206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pore volume-transmissivity correlation on transport phenomena.
    Lunati I; Kinzelbach W; Sørensen I
    J Contam Hydrol; 2003 Dec; 67(1-4):195-217. PubMed ID: 14607477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discretizing the fracture-matrix interface to simulate solute transport.
    Weatherill D; Graf T; Simmons CT; Cook PG; Therrien R; Reynolds DA
    Ground Water; 2008; 46(4):606-15. PubMed ID: 18266725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.
    Mazurek M; Jakob A; Bossart P
    J Contam Hydrol; 2003 Mar; 61(1-4):157-74. PubMed ID: 12598102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.
    Wang D; Wang L; Ding P
    Ultrasonics; 2016 Aug; 70():266-74. PubMed ID: 27259119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
    Mukhopadhyay S; Liu HH; Spycher N; Kennedy BM
    J Contam Hydrol; 2013 Nov; 154():42-52. PubMed ID: 24077359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal pre-asymptotic solute transport in a plane fracture with significant density contrasts.
    Bouquain J; Meheust Y; Davy P
    J Contam Hydrol; 2011 Mar; 120-121():184-97. PubMed ID: 20869787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An X-FEM technique for numerical simulation of variable-density flow in fractured porous media.
    Khoei AR; Saeedmonir S; Hosseini N; Mousavi SM
    MethodsX; 2023; 10():102137. PubMed ID: 37035525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applied tracer tests in fractured rock: Can we predict natural gradient solute transport more accurately than fracture and matrix parameters?
    Weatherill D; Cook PG; Simmons CT; Robinson NI
    J Contam Hydrol; 2006 Dec; 88(3-4):289-305. PubMed ID: 16959371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and numerical investigations on the effect of fracture geometry and fracture aperture distribution on flow and solute transport in natural fractures.
    Stoll M; Huber FM; Trumm M; Enzmann F; Meinel D; Wenka A; Schill E; Schäfer T
    J Contam Hydrol; 2019 Feb; 221():82-97. PubMed ID: 30712982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic analysis of solute mass flows in rock fractures with spatially random parameters.
    Wörman A; Xu S; Dverstorp B
    J Contam Hydrol; 2003 Feb; 60(3-4):163-91. PubMed ID: 12504358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A triple-continuum approach for modeling flow and transport processes in fractured rock.
    Wu YS; Liu HH; Bodvarsson GS
    J Contam Hydrol; 2004 Sep; 73(1-4):145-79. PubMed ID: 15336793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poroelastic modeling of seismic boundary conditions across a fracture.
    Nakagawa S; Schoenberg MA
    J Acoust Soc Am; 2007 Aug; 122(2):831-47. PubMed ID: 17672634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks.
    Molinero J; Samper J
    J Contam Hydrol; 2006 Jan; 82(3-4):293-318. PubMed ID: 16337025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of groundwater velocity in discrete rock fractures.
    Novakowski K; Bickerton G; Lapcevic P; Voralek J; Ross N
    J Contam Hydrol; 2006 Jan; 82(1-2):44-60. PubMed ID: 16239047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using PHREEQC to simulate solute transport in fractured bedrock.
    Lipson DS; McCray JE; Thyne GD
    Ground Water; 2007; 45(4):468-72. PubMed ID: 17600577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.