These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Kink dynamics in a topological straight phi4 lattice. Adib AB; Almeida CA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):037701. PubMed ID: 11580486 [TBL] [Abstract][Full Text] [Related]
4. High-speed kinks in a generalized discrete phi4 model. Dmitriev SV; Khare A; Kevrekidis PG; Saxena A; Hadzievski L Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056603. PubMed ID: 18643182 [TBL] [Abstract][Full Text] [Related]
5. Wave systems with an infinite number of localized traveling waves. Alfimov GL; Medvedeva EV; Pelinovsky DE Phys Rev Lett; 2014 Feb; 112(5):054103. PubMed ID: 24580598 [TBL] [Abstract][Full Text] [Related]
6. Exact discrete compactlike traveling kinks and pulses in phi(4) nonlinear lattices. Comte JC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046619. PubMed ID: 12006059 [TBL] [Abstract][Full Text] [Related]
7. Dynamical interaction of solitary, periodic, rogue type wave solutions and multi-soliton solutions of the nonlinear models. Mamunur Roshid M; Abdeljabbar A; Aldurayhim A; Rahman MM; Roshid HO; Alshammari FS Heliyon; 2022 Dec; 8(12):e11996. PubMed ID: 36506367 [TBL] [Abstract][Full Text] [Related]
8. Translationally invariant discrete kinks from one-dimensional maps. Barashenkov IV; Oxtoby OF; Pelinovsky DE Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035602. PubMed ID: 16241507 [TBL] [Abstract][Full Text] [Related]
9. Exact static solutions for discrete phi4 models free of the Peierls-Nabarro barrier: discretized first-integral approach. Dmitriev SV; Kevrekidis PG; Yoshikawa N; Frantzeskakis DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046609. PubMed ID: 17155194 [TBL] [Abstract][Full Text] [Related]
10. Dissipative lattice model with exact traveling discrete kink-soliton solutions: discrete breather generation and reaction diffusion regime. Comte JC; Marquié P; Remoissenet M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7484-9. PubMed ID: 11970697 [TBL] [Abstract][Full Text] [Related]
11. Ultradiscrete kinks with supersonic speed in a layered crystal with realistic potentials. Archilla JF; Kosevich YA; Jiménez N; Sánchez-Morcillo VJ; García-Raffi LM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022912. PubMed ID: 25768574 [TBL] [Abstract][Full Text] [Related]
13. Rice's ansatz for overdamped phi4 kinks at finite temperature. Lythe G; Mertens FG Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):027601. PubMed ID: 12636870 [TBL] [Abstract][Full Text] [Related]
14. Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models. Alvarez-Nodarse R; Quintero NR; Mertens FG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042916. PubMed ID: 25375576 [TBL] [Abstract][Full Text] [Related]
15. Resonances in the dynamics of straight phi(4) kinks perturbed by ac forces. Quintero NR; Sanchez A; Mertens FG Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5695-705. PubMed ID: 11089128 [TBL] [Abstract][Full Text] [Related]
16. Exceptional discretizations of the sine-Gordon equation. Barashenkov IV; van Heerden TC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036601. PubMed ID: 18517537 [TBL] [Abstract][Full Text] [Related]
17. Moving lattice kinks and pulses: an inverse method. Flach S; Zolotaryuk Y; Kladko K Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):6105-15. PubMed ID: 11969596 [TBL] [Abstract][Full Text] [Related]
18. Analytical and numerical study of travelling waves using the Maxwell-Cattaneo relaxation model extended to reaction-advection-diffusion systems. Sabelnikov VA; Petrova NN; Lipatnikov AN Phys Rev E; 2016 Oct; 94(4-1):042218. PubMed ID: 27841507 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of oscillator chains from high frequency initial conditions: comparison of phi4 and FPU-beta models. Lichtenberg AJ; Mirnov VV; Day C Chaos; 2005 Mar; 15(1):15109. PubMed ID: 15836286 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear waves in networks: model reduction for the sine-Gordon equation. Caputo JG; Dutykh D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022912. PubMed ID: 25215804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]