These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22181631)

  • 1. Extraordinary electron transmission through a periodic array of quantum dots.
    Petrosyan LS; Kirakosyan AS; Shahbazyan TV
    Phys Rev Lett; 2011 Nov; 107(19):196802. PubMed ID: 22181631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening effect on the exciton mediated nonlinear optical susceptibility of semiconductor quantum dots.
    Bautista JE; Lyra ML; Lima RP
    Opt Express; 2014 Nov; 22(23):28270-5. PubMed ID: 25402068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.
    Rossi A; Tanttu T; Hudson FE; Sun Y; Möttönen M; Dzurak AS
    J Vis Exp; 2015 Jun; (100):e52852. PubMed ID: 26067215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon-quantum dot coupling from arrays of nanoholes.
    Brolo AG; Kwok SC; Cooper MD; Moffitt MG; Wang CW; Gordon R; Riordon J; Kavanagh KL
    J Phys Chem B; 2006 Apr; 110(16):8307-13. PubMed ID: 16623513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and separation of semiconductor quantum dot dimers and trimers.
    Xu X; Stöttinger S; Battagliarin G; Hinze G; Mugnaioli E; Li C; Müllen K; Basché T
    J Am Chem Soc; 2011 Nov; 133(45):18062-5. PubMed ID: 22003956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast near-field spectroscopy of single semiconductor quantum dots.
    Lienau C
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):861-79. PubMed ID: 15306498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hole-induced electron transport through core-shell quantum dots: a direct measurement of the electron-hole interaction.
    Swart I; Sun Z; Vanmaekelbergh D; Liljeroth P
    Nano Lett; 2010 May; 10(5):1931-5. PubMed ID: 20392107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of dopamine-modified quantum dots and effects on biological systems.
    Clarke SJ; Hollmann CA; Zhang Z; Suffern D; Bradforth SE; Dimitrijevic NM; Minarik WG; Nadeau JL
    Nat Mater; 2006 May; 5(5):409-17. PubMed ID: 16617348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital and charge-resolved polaron states in CdSe dots and rods probed by scanning tunneling spectroscopy.
    Sun Z; Swart I; Delerue C; Vanmaekelbergh D; Liljeroth P
    Phys Rev Lett; 2009 May; 102(19):196401. PubMed ID: 19518979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties of coupled semiconductor quantum dots.
    Jeong H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3329-32. PubMed ID: 17252758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates.
    Stewart MH; Huston AL; Scott AM; Oh E; Algar WR; Deschamps JR; Susumu K; Jain V; Prasuhn DE; Blanco-Canosa J; Dawson PE; Medintz IL
    ACS Nano; 2013 Oct; 7(10):9489-505. PubMed ID: 24128175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy level alignment in CdS quantum dot sensitized solar cells using molecular dipoles.
    Shalom M; Rühle S; Hod I; Yahav S; Zaban A
    J Am Chem Soc; 2009 Jul; 131(29):9876-7. PubMed ID: 19583203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid system based on quantum dots and photosystem 2 core complex.
    Maksimov EG; Kurashov VN; Mamedov MD; Paschenko VZ
    Biochemistry (Mosc); 2012 Jun; 77(6):624-30. PubMed ID: 22817462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface.
    Long R; Prezhdo OV
    J Am Chem Soc; 2011 Nov; 133(47):19240-9. PubMed ID: 22007727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of single bacterial pathogens with semiconductor quantum dots.
    Hahn MA; Tabb JS; Krauss TD
    Anal Chem; 2005 Aug; 77(15):4861-9. PubMed ID: 16053299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of Quantum Resonance in Periodically-Ordered Three-Dimensional Superlattice of CdTe Quantum Dots.
    Kim D; Tomita S; Ohshiro K; Watanabe T; Sakai T; Chang IY; Hyeon-Deuk K
    Nano Lett; 2015 Jul; 15(7):4343-7. PubMed ID: 26091186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.