These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22181643)

  • 41. Measurement of an exciton Rabi rotation in a single GaN/Al(x)Ga(1-x)N nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control.
    Holmes M; Kako S; Choi K; Podemski P; Arita M; Arakawa Y
    Phys Rev Lett; 2013 Aug; 111(5):057401. PubMed ID: 23952442
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical pumping of a single hole spin in a quantum dot.
    Gerardot BD; Brunner D; Dalgarno PA; Ohberg P; Seidl S; Kroner M; Karrai K; Stoltz NG; Petroff PM; Warburton RJ
    Nature; 2008 Jan; 451(7177):441-4. PubMed ID: 18216849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration.
    Emary C; Xu X; Steel DG; Saikin S; Sham LJ
    Phys Rev Lett; 2007 Jan; 98(4):047401. PubMed ID: 17358809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
    Press D; Ladd TD; Zhang B; Yamamoto Y
    Nature; 2008 Nov; 456(7219):218-21. PubMed ID: 19005550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots.
    Duque CA; Porras-Montenegro N; Barticevic Z; Pacheco M; Oliveira LE
    J Phys Condens Matter; 2006 Feb; 18(6):1877-84. PubMed ID: 21697562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coherent control to prepare an InAs quantum dot for spin-photon entanglement.
    Webster LA; Truex K; Duan LM; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2014 Mar; 112(12):126801. PubMed ID: 24724666
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs.
    Scheibner M; Ponomarev IV; Stinaff EA; Doty MF; Bracker AS; Hellberg CS; Reinecke TL; Gammon D
    Phys Rev Lett; 2007 Nov; 99(19):197402. PubMed ID: 18233111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coupling effects on photoluminescence of exciton states in asymmetric quantum dot molecules.
    Fino NR; Camacho AS; Ramírez HY
    Nanoscale Res Lett; 2014; 9(1):297. PubMed ID: 24994955
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spin-polarized transport induced by spin-pumping in a Rashba ring.
    Liang F; Yang YH; Wang J; Chan KS
    J Phys Condens Matter; 2009 Dec; 21(48):485304. PubMed ID: 21832514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deterministic photon pairs and coherent optical control of a single quantum dot.
    Jayakumar H; Predojević A; Huber T; Kauten T; Solomon GS; Weihs G
    Phys Rev Lett; 2013 Mar; 110(13):135505. PubMed ID: 23581338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nuclear spin nanomagnet in an optically excited quantum dot.
    Korenev VL
    Phys Rev Lett; 2007 Dec; 99(25):256405. PubMed ID: 18233538
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Near-field optical mapping of exciton wave functions in a GaAs quantum dot.
    Matsuda K; Saiki T; Nomura S; Mihara M; Aoyagi Y; Nair S; Takagahara T
    Phys Rev Lett; 2003 Oct; 91(17):177401. PubMed ID: 14611375
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GaAs Cone-Shell Quantum Dots in a Lateral Electric Field: Exciton Stark-Shift, Lifetime, and Fine-Structure Splitting.
    Alshaikh A; Blick RH; Heyn C
    Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spin relaxation quenching in semiconductor quantum dots.
    Paillard M; Marie X; Renucci P; Amand T; Jbeli A; Gérard JM
    Phys Rev Lett; 2001 Feb; 86(8):1634-7. PubMed ID: 11290211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical manipulation of a single Mn spin in a CdTe-based quantum dot.
    Goryca M; Kazimierczuk T; Nawrocki M; Golnik A; Gaj JA; Kossacki P; Wojnar P; Karczewski G
    Phys Rev Lett; 2009 Aug; 103(8):087401. PubMed ID: 19792759
    [TBL] [Abstract][Full Text] [Related]  

  • 57. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.
    Viennot JJ; Dartiailh MC; Cottet A; Kontos T
    Science; 2015 Jul; 349(6246):408-11. PubMed ID: 26206930
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing the spin state of a single magnetic ion in an individual quantum dot.
    Besombes L; Léger Y; Maingault L; Ferrand D; Mariette H; Cibert J
    Phys Rev Lett; 2004 Nov; 93(20):207403. PubMed ID: 15600969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Hanle effect and electron spin polarization in InAs/GaAs quantum dots up to room temperature.
    Beyer J; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    Nanotechnology; 2012 Apr; 23(13):135705. PubMed ID: 22421164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exciton-spin memory with a semiconductor quantum dot molecule.
    Boyer de la Giroday A; Sköld N; Stevenson RM; Farrer I; Ritchie DA; Shields AJ
    Phys Rev Lett; 2011 May; 106(21):216802. PubMed ID: 21699327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.