These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22181760)
1. Macroscopic superconducting current through a silicon surface reconstruction with indium adatoms: Si(111)-(√7 × √3)-In. Uchihashi T; Mishra P; Aono M; Nakayama T Phys Rev Lett; 2011 Nov; 107(20):207001. PubMed ID: 22181760 [TBL] [Abstract][Full Text] [Related]
2. Lead growth on Si(111) surfaces reconstructed by indium. Vlachos D; Kamaratos M; Foulias SD; Binz S; Hupalo M; Tringides MC J Phys Condens Matter; 2012 Mar; 24(9):095006. PubMed ID: 22301708 [TBL] [Abstract][Full Text] [Related]
3. √7 × √3 surface with a double layer of In on Si(1 1 1) exhibiting both hexagonal and rectangular features. Woo J; Shim H; Lee G J Phys Condens Matter; 2019 Nov; 31(46):465001. PubMed ID: 31323654 [TBL] [Abstract][Full Text] [Related]
4. Surface alloy formation of noble adatoms adsorbed on Si(111)-√3 × √3-Pb surface: a first-principles study. Li C; Wang F; Sun Q; Jia Y J Phys Condens Matter; 2011 Jul; 23(26):265001. PubMed ID: 21642754 [TBL] [Abstract][Full Text] [Related]
11. Resistive phase transition of the superconducting Si(111)-(7×3)-In surface. Uchihashi T; Mishra P; Nakayama T Nanoscale Res Lett; 2013 Apr; 8(1):167. PubMed ID: 23578253 [TBL] [Abstract][Full Text] [Related]
12. Gold Atoms Promote Macroscopic Superconductivity in an Atomic Monolayer of Pb on Si(111). Baranov DS; Vlaic S; Baptista J; Cofler E; Stolyarov VS; Roditchev D; Pons S Nano Lett; 2022 Jan; 22(2):652-657. PubMed ID: 34990554 [TBL] [Abstract][Full Text] [Related]
13. Scanning tunneling microscopy investigations of unoccupied surface states in two-dimensional semiconducting β-√3 × √3-Bi/Si(111) surface. Gou J; Kong LJ; Li WB; Sheng SX; Li H; Meng S; Cheng P; Wu KH; Chen L Phys Chem Chem Phys; 2018 Aug; 20(30):20188-20193. PubMed ID: 30027957 [TBL] [Abstract][Full Text] [Related]
14. Nickel-containing nano-sized islands grown on Ge(111)-c(2 × 8) and Ag/Ge(111)-(√3 × √3) surfaces. Fu TY; Tomaszewska A; Huang XL; Li JH; Hsieh PI; Jhou MK Nanoscale Res Lett; 2013 Oct; 8(1):416. PubMed ID: 24103192 [TBL] [Abstract][Full Text] [Related]
15. Superconductivity in 4-Angstrom carbon nanotubes--a short review. Wang Z; Shi W; Lortz R; Sheng P Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840 [TBL] [Abstract][Full Text] [Related]
16. Effect of Na adsorption on the structural and electronic properties of Si(111)√3 × √3-Au surface. Bondarenko LV; Matetskiy AV; Yakovlev AA; Tupchaya AY; Gruznev DV; Ryzhkova MV; Tsukanov DA; Borisenko EA; Chukurov EN; Denisov NV; Vilkov O; Vyalikh DV; Zotov AV; Saranin AA J Phys Condens Matter; 2014 Feb; 26(5):055009. PubMed ID: 24443582 [TBL] [Abstract][Full Text] [Related]
17. Titanium Nitride as a New Prospective Material for NanoSQUIDs and Superconducting Nanobridge Electronics. Faley MI; Liu Y; Dunin-Borkowski RE Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33673042 [TBL] [Abstract][Full Text] [Related]
18. Gate-tuned high frequency response of carbon nanotube Josephson junctions. Cleuziou JP; Wernsdorfer W; Andergassen S; Florens S; Bouchiat V; Ondarçuhu T; Monthioux M Phys Rev Lett; 2007 Sep; 99(11):117001. PubMed ID: 17930461 [TBL] [Abstract][Full Text] [Related]
19. The critical state in a random 3D Josephson net created by transport current. Bogolyubov NA J Phys Condens Matter; 2008 Mar; 20(11):115201. PubMed ID: 21694218 [TBL] [Abstract][Full Text] [Related]
20. Diode effect in Josephson junctions with a single magnetic atom. Trahms M; Melischek L; Steiner JF; Mahendru B; Tamir I; Bogdanoff N; Peters O; Reecht G; Winkelmann CB; von Oppen F; Franke KJ Nature; 2023 Mar; 615(7953):628-633. PubMed ID: 36890238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]