These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22181760)

  • 1. Macroscopic superconducting current through a silicon surface reconstruction with indium adatoms: Si(111)-(√7 × √3)-In.
    Uchihashi T; Mishra P; Aono M; Nakayama T
    Phys Rev Lett; 2011 Nov; 107(20):207001. PubMed ID: 22181760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead growth on Si(111) surfaces reconstructed by indium.
    Vlachos D; Kamaratos M; Foulias SD; Binz S; Hupalo M; Tringides MC
    J Phys Condens Matter; 2012 Mar; 24(9):095006. PubMed ID: 22301708
    [TBL] [Abstract][Full Text] [Related]  

  • 3.   √7  ×  √3 surface with a double layer of In on Si(1 1 1) exhibiting both hexagonal and rectangular features.
    Woo J; Shim H; Lee G
    J Phys Condens Matter; 2019 Nov; 31(46):465001. PubMed ID: 31323654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface alloy formation of noble adatoms adsorbed on Si(111)-√3 × √3-Pb surface: a first-principles study.
    Li C; Wang F; Sun Q; Jia Y
    J Phys Condens Matter; 2011 Jul; 23(26):265001. PubMed ID: 21642754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures.
    Borzenets IV; Coskun UC; Mebrahtu HT; Bomze YV; Smirnov AI; Finkelstein G
    Phys Rev Lett; 2013 Jul; 111(2):027001. PubMed ID: 23889431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon growth at the two-dimensional limit on Ag(111).
    Mannix AJ; Kiraly B; Fisher BL; Hersam MC; Guisinger NP
    ACS Nano; 2014 Jul; 8(7):7538-47. PubMed ID: 25000460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diode Effects in Current-Biased Josephson Junctions.
    Steiner JF; Melischek L; Trahms M; Franke KJ; von Oppen F
    Phys Rev Lett; 2023 Apr; 130(17):177002. PubMed ID: 37172233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching the charge state of individual surface atoms at Si(111)-√3 × √3:B surfaces.
    Eom D; Moon CY; Koo JY
    Nano Lett; 2015 Jan; 15(1):398-402. PubMed ID: 25558914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging Josephson vortices on the surface superconductor Si(111)-(√7×√3)-In using a scanning tunneling microscope.
    Yoshizawa S; Kim H; Kawakami T; Nagai Y; Nakayama T; Hu X; Hasegawa Y; Uchihashi T
    Phys Rev Lett; 2014 Dec; 113(24):247004. PubMed ID: 25541798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111).
    Matetskiy AV; Ichinokura S; Bondarenko LV; Tupchaya AY; Gruznev DV; Zotov AV; Saranin AA; Hobara R; Takayama A; Hasegawa S
    Phys Rev Lett; 2015 Oct; 115(14):147003. PubMed ID: 26551819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive phase transition of the superconducting Si(111)-(7×3)-In surface.
    Uchihashi T; Mishra P; Nakayama T
    Nanoscale Res Lett; 2013 Apr; 8(1):167. PubMed ID: 23578253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Atoms Promote Macroscopic Superconductivity in an Atomic Monolayer of Pb on Si(111).
    Baranov DS; Vlaic S; Baptista J; Cofler E; Stolyarov VS; Roditchev D; Pons S
    Nano Lett; 2022 Jan; 22(2):652-657. PubMed ID: 34990554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning tunneling microscopy investigations of unoccupied surface states in two-dimensional semiconducting β-√3 × √3-Bi/Si(111) surface.
    Gou J; Kong LJ; Li WB; Sheng SX; Li H; Meng S; Cheng P; Wu KH; Chen L
    Phys Chem Chem Phys; 2018 Aug; 20(30):20188-20193. PubMed ID: 30027957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel-containing nano-sized islands grown on Ge(111)-c(2 × 8) and Ag/Ge(111)-(√3 × √3) surfaces.
    Fu TY; Tomaszewska A; Huang XL; Li JH; Hsieh PI; Jhou MK
    Nanoscale Res Lett; 2013 Oct; 8(1):416. PubMed ID: 24103192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconductivity in 4-Angstrom carbon nanotubes--a short review.
    Wang Z; Shi W; Lortz R; Sheng P
    Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Na adsorption on the structural and electronic properties of Si(111)√3 × √3-Au surface.
    Bondarenko LV; Matetskiy AV; Yakovlev AA; Tupchaya AY; Gruznev DV; Ryzhkova MV; Tsukanov DA; Borisenko EA; Chukurov EN; Denisov NV; Vilkov O; Vyalikh DV; Zotov AV; Saranin AA
    J Phys Condens Matter; 2014 Feb; 26(5):055009. PubMed ID: 24443582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium Nitride as a New Prospective Material for NanoSQUIDs and Superconducting Nanobridge Electronics.
    Faley MI; Liu Y; Dunin-Borkowski RE
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33673042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gate-tuned high frequency response of carbon nanotube Josephson junctions.
    Cleuziou JP; Wernsdorfer W; Andergassen S; Florens S; Bouchiat V; Ondarçuhu T; Monthioux M
    Phys Rev Lett; 2007 Sep; 99(11):117001. PubMed ID: 17930461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical state in a random 3D Josephson net created by transport current.
    Bogolyubov NA
    J Phys Condens Matter; 2008 Mar; 20(11):115201. PubMed ID: 21694218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diode effect in Josephson junctions with a single magnetic atom.
    Trahms M; Melischek L; Steiner JF; Mahendru B; Tamir I; Bogdanoff N; Peters O; Reecht G; Winkelmann CB; von Oppen F; Franke KJ
    Nature; 2023 Mar; 615(7953):628-633. PubMed ID: 36890238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.