These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22181880)

  • 1. Mechanical squeezing via parametric amplification and weak measurement.
    Szorkovszky A; Doherty AC; Harris GI; Bowen WP
    Phys Rev Lett; 2011 Nov; 107(21):213603. PubMed ID: 22181880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong thermomechanical squeezing via weak measurement.
    Szorkovszky A; Brawley GA; Doherty AC; Bowen WP
    Phys Rev Lett; 2013 May; 110(18):184301. PubMed ID: 23683200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit.
    Lei CU; Weinstein AJ; Suh J; Wollman EE; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Phys Rev Lett; 2016 Sep; 117(10):100801. PubMed ID: 27636463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring.
    Pontin A; Bonaldi M; Borrielli A; Cataliotti FS; Marino F; Prodi GA; Serra E; Marin F
    Phys Rev Lett; 2014 Jan; 112(2):023601. PubMed ID: 24484010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object.
    Lecocq F; Clark JB; Simmonds RW; Aumentado J; Teufel JD
    Phys Rev X; 2015; 5(4):041037. PubMed ID: 27057422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heisenberg-Limited Spin Squeezing via Bosonic Parametric Driving.
    Groszkowski P; Lau HK; Leroux C; Govia LCG; Clerk AA
    Phys Rev Lett; 2020 Nov; 125(20):203601. PubMed ID: 33258660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of Motion beyond the Quantum Limit by Transient Amplification.
    Delaney RD; Reed AP; Andrews RW; Lehnert KW
    Phys Rev Lett; 2019 Nov; 123(18):183603. PubMed ID: 31763905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback-enhanced parametric squeezing of mechanical motion.
    Vinante A; Falferi P
    Phys Rev Lett; 2013 Nov; 111(20):207203. PubMed ID: 24289708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing Hidden Quantum Correlations in an Electromechanical Measurement.
    Ockeloen-Korppi CF; Damskägg E; Paraoanu GS; Massel F; Sillanpää MA
    Phys Rev Lett; 2018 Dec; 121(24):243601. PubMed ID: 30608715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of squeezed light with a monolithic optical parametric oscillator: simultaneous achievement of phase matching and cavity resonance by temperature control.
    Yonezawa H; Nagashima K; Furusawa A
    Opt Express; 2010 Sep; 18(19):20143-50. PubMed ID: 20940905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantum trajectory approach to quantum feedback control of an oscillator revisited.
    Doherty AC; Szorkovszky A; Harris GI; Bowen WP
    Philos Trans A Math Phys Eng Sci; 2012 Nov; 370(1979):5338-53. PubMed ID: 23091212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical backaction-evading measurement of a mechanical oscillator.
    Shomroni I; Qiu L; Malz D; Nunnenkamp A; Kippenberg TJ
    Nat Commun; 2019 May; 10(1):2086. PubMed ID: 31064984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezed optomechanics with phase-matched amplification and dissipation.
    Lü XY; Wu Y; Johansson JR; Jing H; Zhang J; Nori F
    Phys Rev Lett; 2015 Mar; 114(9):093602. PubMed ID: 25793814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum amplification of mechanical oscillator motion.
    Burd SC; Srinivas R; Bollinger JJ; Wilson AC; Wineland DJ; Leibfried D; Slichter DH; Allcock DTC
    Science; 2019 Jun; 364(6446):1163-1165. PubMed ID: 31221854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator.
    Suh J; LaHaye MD; Echternach PM; Schwab KC; Roukes ML
    Nano Lett; 2010 Oct; 10(10):3990-4. PubMed ID: 20843059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of quadrature squeezing in a chi2 nonlinear waveguide using a temporally shaped local oscillator pulse.
    Eto Y; Tajima T; Zhang Y; Hirano T
    Opt Express; 2008 Jul; 16(14):10650-6657. PubMed ID: 18607479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Squeezing via Fast Continuous Measurement.
    Meng C; Brawley GA; Bennett JS; Vanner MR; Bowen WP
    Phys Rev Lett; 2020 Jul; 125(4):043604. PubMed ID: 32794807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lifting the bandwidth limit of optical homodyne measurement with broadband parametric amplification.
    Shaked Y; Michael Y; Vered RZ; Bello L; Rosenbluh M; Pe'er A
    Nat Commun; 2018 Feb; 9(1):609. PubMed ID: 29426909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
    Wollman EE; Lei CU; Weinstein AJ; Suh J; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Science; 2015 Aug; 349(6251):952-5. PubMed ID: 26315431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.