These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22182025)

  • 1. Realization of an optomechanical interface between ultracold atoms and a membrane.
    Camerer S; Korppi M; Jöckel A; Hunger D; Hänsch TW; Treutlein P
    Phys Rev Lett; 2011 Nov; 107(22):223001. PubMed ID: 22182025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane.
    Vochezer A; Kampschulte T; Hammerer K; Treutlein P
    Phys Rev Lett; 2018 Feb; 120(7):073602. PubMed ID: 29542944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system.
    Jöckel A; Faber A; Kampschulte T; Korppi M; Rakher MT; Treutlein P
    Nat Nanotechnol; 2015 Jan; 10(1):55-9. PubMed ID: 25420032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.
    Peterson RW; Purdy TP; Kampel NS; Andrews RW; Yu PL; Lehnert KW; Regal CA
    Phys Rev Lett; 2016 Feb; 116(6):063601. PubMed ID: 26918990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber.
    Vetsch E; Reitz D; Sagué G; Schmidt R; Dawkins ST; Rauschenbeutel A
    Phys Rev Lett; 2010 May; 104(20):203603. PubMed ID: 20867028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable cavity optomechanics with ultracold atoms.
    Purdy TP; Brooks DW; Botter T; Brahms N; Ma ZY; Stamper-Kurn DM
    Phys Rev Lett; 2010 Sep; 105(13):133602. PubMed ID: 21230775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.
    Aidelsburger M; Atala M; Lohse M; Barreiro JT; Paredes B; Bloch I
    Phys Rev Lett; 2013 Nov; 111(18):185301. PubMed ID: 24237530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical detection of the quantization of collective atomic motion.
    Brahms N; Botter T; Schreppler S; Brooks DW; Stamper-Kurn DM
    Phys Rev Lett; 2012 Mar; 108(13):133601. PubMed ID: 22540699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms.
    Schmid S; Härter A; Frisch A; Hoinka S; Denschlag JH
    Rev Sci Instrum; 2012 May; 83(5):053108. PubMed ID: 22667603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multipartite entangled spatial modes of ultracold atoms generated and controlled by quantum measurement.
    Elliott TJ; Kozlowski W; Caballero-Benitez SF; Mekhov IB
    Phys Rev Lett; 2015 Mar; 114(11):113604. PubMed ID: 25839270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly coherent spectroscopy of ultracold atoms and molecules in optical lattices.
    Zelevinsky T; Blatt S; Boyd MM; Campbell GK; Ludlow AD; Ye J
    Chemphyschem; 2008 Feb; 9(3):375-82. PubMed ID: 18275047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical kagome lattice for ultracold atoms with nearest neighbor interactions.
    Ruostekoski J
    Phys Rev Lett; 2009 Aug; 103(8):080406. PubMed ID: 19792700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bose-Glass phases of ultracold atoms due to cavity backaction.
    Habibian H; Winter A; Paganelli S; Rieger H; Morigi G
    Phys Rev Lett; 2013 Feb; 110(7):075304. PubMed ID: 25166381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium Quantum Phase Transition in a Hybrid Atom-Optomechanical System.
    Mann N; Bakhtiari MR; Pelster A; Thorwart M
    Phys Rev Lett; 2018 Feb; 120(6):063605. PubMed ID: 29481249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing and detecting the quantum Hall effect without landau levels by using ultracold atoms.
    Shao LB; Zhu SL; Sheng L; Xing DY; Wang ZD
    Phys Rev Lett; 2008 Dec; 101(24):246810. PubMed ID: 19113652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction.
    Kohler J; Gerber JA; Dowd E; Stamper-Kurn DM
    Phys Rev Lett; 2018 Jan; 120(1):013601. PubMed ID: 29350956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective atomic motion in an optical lattice formed inside a high finesse cavity.
    Nagorny B; Elsässer T; Hemmerich A
    Phys Rev Lett; 2003 Oct; 91(15):153003. PubMed ID: 14611465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Optomechanical Strain in a Cold Atomic Cloud.
    Matzliah N; Edri H; Sinay A; Ozeri R; Davidson N
    Phys Rev Lett; 2017 Oct; 119(16):163201. PubMed ID: 29099207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emulating solid-state physics with a hybrid system of ultracold ions and atoms.
    Bissbort U; Cocks D; Negretti A; Idziaszek Z; Calarco T; Schmidt-Kaler F; Hofstetter W; Gerritsma R
    Phys Rev Lett; 2013 Aug; 111(8):080501. PubMed ID: 24010420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single ions trapped in a one-dimensional optical lattice.
    Enderlein M; Huber T; Schneider C; Schaetz T
    Phys Rev Lett; 2012 Dec; 109(23):233004. PubMed ID: 23368193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.