These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 22182092)
1. Strong and weak chaos in nonlinear networks with time-delayed couplings. Heiligenthal S; Dahms T; Yanchuk S; Jüngling T; Flunkert V; Kanter I; Schöll E; Kinzel W Phys Rev Lett; 2011 Dec; 107(23):234102. PubMed ID: 22182092 [TBL] [Abstract][Full Text] [Related]
2. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Heiligenthal S; Jüngling T; D'Huys O; Arroyo-Almanza DA; Soriano MC; Fischer I; Kanter I; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012902. PubMed ID: 23944533 [TBL] [Abstract][Full Text] [Related]
3. Chaos in networks with time-delayed couplings. Kinzel W Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120461. PubMed ID: 23960219 [TBL] [Abstract][Full Text] [Related]
4. Synchronization of chaotic networks with time-delayed couplings: an analytic study. Englert A; Heiligenthal S; Kinzel W; Kanter I Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046222. PubMed ID: 21599285 [TBL] [Abstract][Full Text] [Related]
5. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling. Zaheer MH; Rehan M; Mustafa G; Ashraf M ISA Trans; 2014 Nov; 53(6):1716-30. PubMed ID: 25440951 [TBL] [Abstract][Full Text] [Related]
6. The transition between strong and weak chaos in delay systems: Stochastic modeling approach. Jüngling T; D'Huys O; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062918. PubMed ID: 26172783 [TBL] [Abstract][Full Text] [Related]
7. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators. Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513 [TBL] [Abstract][Full Text] [Related]
8. Stochastic synchronization in blinking networks of chaotic maps. Porfiri M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056114. PubMed ID: 23004828 [TBL] [Abstract][Full Text] [Related]
9. Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Srinivasan K; Senthilkumar DV; Murali K; Lakshmanan M; Kurths J Chaos; 2011 Jun; 21(2):023119. PubMed ID: 21721761 [TBL] [Abstract][Full Text] [Related]
10. Chaos synchronization by resonance of multiple delay times. Martin MJ; D'Huys O; Lauerbach L; Korutcheva E; Kinzel W Phys Rev E; 2016 Feb; 93(2):022206. PubMed ID: 26986330 [TBL] [Abstract][Full Text] [Related]
11. Pulsed chaos synchronization in networks with adaptive couplings. Winkler M; Butsch S; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016203. PubMed ID: 23005503 [TBL] [Abstract][Full Text] [Related]
12. Generalized synchronization in time-delayed systems. Shahverdiev EM; Shore KA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016201. PubMed ID: 15697692 [TBL] [Abstract][Full Text] [Related]
13. Transient characteristics of chaos synchronization in a semiconductor laser subject to optical feedback. Uchida A; Shibasaki N; Nogawa S; Yoshimori S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056201. PubMed ID: 15244898 [TBL] [Abstract][Full Text] [Related]
14. Chaotic operation and chaos control of travelling wave ultrasonic motor. Shi J; Zhao F; Shen X; Wang X Ultrasonics; 2013 Aug; 53(6):1112-23. PubMed ID: 23490014 [TBL] [Abstract][Full Text] [Related]
15. Weak and strong chaos in Fermi-Pasta-Ulam models and beyond. Pettini M; Casetti L; Cerruti-Sola M; Franzosi R; Cohen EG Chaos; 2005 Mar; 15(1):15106. PubMed ID: 15836283 [TBL] [Abstract][Full Text] [Related]
16. Scenarios for generalized synchronization with chaotic driving. Singh TU; Nandi A; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):025205. PubMed ID: 18850884 [TBL] [Abstract][Full Text] [Related]
17. Chaotic dynamics on large networks. Sprott JC Chaos; 2008 Jun; 18(2):023135. PubMed ID: 18601501 [TBL] [Abstract][Full Text] [Related]
18. Lyapunov approach to synchronization of chaotic systems with vanishing nonlinear perturbations: From static to dynamic couplings. Arena P; Buscarino A; Fortuna L; Patanè L Phys Rev E; 2020 Jul; 102(1-1):012211. PubMed ID: 32794950 [TBL] [Abstract][Full Text] [Related]
19. Tunable power law in the desynchronization events of coupled chaotic electronic circuits. de Oliveira GF; de Souza Cavalcante HL; di Lorenzo O; Chevrollier M; Passerat de Silans T; Oriá M Chaos; 2014 Mar; 24(1):013105. PubMed ID: 24697367 [TBL] [Abstract][Full Text] [Related]
20. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system. Wang R; Gao JY Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]