These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 22182469)
1. Molecular modeling of Bt Cry1Ac (DI-DII)-ASAL (Allium sativum lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta. Tajne S; Sanam R; Gundla R; Gandhi NS; Mancera RL; Boddupally D; Vudem DR; Khareedu VR J Mol Graph Model; 2012 Mar; 33():61-76. PubMed ID: 22182469 [TBL] [Abstract][Full Text] [Related]
2. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related]
3. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
5. Compatibility of garlic (Allium sativum L.) leaf agglutinin and Cry1Ac δ-endotoxin for gene pyramiding. Upadhyay SK; Singh S; Chandrashekar K; Tuli R; Singh PK Appl Microbiol Biotechnol; 2012 Mar; 93(6):2365-75. PubMed ID: 21870043 [TBL] [Abstract][Full Text] [Related]
6. Univalent binding of the Cry1Ab toxin of Bacillus thuringiensis to a conserved structural motif in the cadherin receptor BT-R1. Griko NB; Rose-Young L; Zhang X; Carpenter L; Candas M; Ibrahim MA; Junker M; Bulla LA Biochemistry; 2007 Sep; 46(35):10001-7. PubMed ID: 17696320 [TBL] [Abstract][Full Text] [Related]
7. Determining the involvement of two aminopeptidase Ns in the resistance of Plutella xylostella to the Bt toxin Cry1Ac: cloning and study of in vitro function. Chang X; Wu Q; Wang S; Wang R; Yang Z; Chen D; Jiao X; Mao Z; Zhang Y J Biochem Mol Toxicol; 2012 Feb; 26(2):60-70. PubMed ID: 22371317 [TBL] [Abstract][Full Text] [Related]
8. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin. Knight PJ; Carroll J; Ellar DJ Insect Biochem Mol Biol; 2004 Jan; 34(1):101-12. PubMed ID: 14976987 [TBL] [Abstract][Full Text] [Related]
9. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. Arenas I; Bravo A; Soberón M; Gómez I J Biol Chem; 2010 Apr; 285(17):12497-503. PubMed ID: 20177063 [TBL] [Abstract][Full Text] [Related]
10. Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Upadhyay SK; Singh PK Biotechnol Lett; 2011 Oct; 33(10):2027-36. PubMed ID: 21660568 [TBL] [Abstract][Full Text] [Related]
11. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta. Onofre J; Gaytán MO; Peña-Cardeña A; García-Gomez BI; Pacheco S; Gómez I; Bravo A; Soberón M Peptides; 2017 Dec; 98():93-98. PubMed ID: 28108197 [TBL] [Abstract][Full Text] [Related]
12. Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. Cooper MA; Carroll J; Travis ER; Williams DH; Ellar DJ Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):677-83. PubMed ID: 9677328 [TBL] [Abstract][Full Text] [Related]
13. A novel 96-kDa aminopeptidase localized on epithelial cell membranes of Bombyx mori midgut, which binds to Cry1Ac toxin of Bacillus thuringiensis. Shitomi Y; Hayakawa T; Hossain DM; Higuchi M; Miyamoto K; Nakanishi K; Sato R; Hori H J Biochem; 2006 Feb; 139(2):223-33. PubMed ID: 16452310 [TBL] [Abstract][Full Text] [Related]
14. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Zhang S; Cheng H; Gao Y; Wang G; Liang G; Wu K Insect Biochem Mol Biol; 2009 Jul; 39(7):421-9. PubMed ID: 19376227 [TBL] [Abstract][Full Text] [Related]
15. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
16. Carbohydrate analyses of Manduca sexta aminopeptidase N, co-purifying neutral lipids and their functional interactions with Bacillus thuringiensis Cry1Ac toxin. Sangadala S; Azadi P; Carlson R; Adang MJ Insect Biochem Mol Biol; 2001 Dec; 32(1):97-107. PubMed ID: 11719073 [TBL] [Abstract][Full Text] [Related]
17. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Fabrick JA; Tabashnik BE Insect Biochem Mol Biol; 2007 Feb; 37(2):97-106. PubMed ID: 17244539 [TBL] [Abstract][Full Text] [Related]
18. Role of two arginine residues in domain II, loop 2 of Cry1Ab and Cry1Ac Bacillus thuringiensis delta-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N. Lee MK; Rajamohan F; Jenkins JL; Curtiss AS; Dean DH Mol Microbiol; 2000 Oct; 38(2):289-98. PubMed ID: 11069655 [TBL] [Abstract][Full Text] [Related]
19. N546 in beta18-beta19 loop is important for binding and toxicity of the Bacillus thuringiensis Cry1Ac toxin. Xiang WF; Qiu XL; Zhi DX; Min ZX; Yuan L; Quan YZ J Invertebr Pathol; 2009 Jun; 101(2):119-23. PubMed ID: 19416731 [TBL] [Abstract][Full Text] [Related]
20. SUMO fusion facilitates expression and purification of garlic leaf lectin but modifies some of its properties. Upadhyay SK; Saurabh S; Rai P; Singh R; Chandrashekar K; Verma PC; Singh PK; Tuli R J Biotechnol; 2010 Mar; 146(1-2):1-8. PubMed ID: 20100526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]