These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 22182622)

  • 1. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci.
    Wang H; Lei Z; Li X; Oetting RD
    Environ Entomol; 2011 Feb; 40(1):132-9. PubMed ID: 22182622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins.
    Benoit JB; Lopez-Martinez G; Teets NM; Phillips SA; Denlinger DL
    Med Vet Entomol; 2009 Dec; 23(4):418-25. PubMed ID: 19941608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius).
    Lü ZC; Wan FH
    J Exp Biol; 2011 Mar; 214(Pt 5):764-9. PubMed ID: 21307062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1).
    Díaz F; Orobio RF; Chavarriaga P; Toro-Perea N
    J Therm Biol; 2015 Aug; 52():199-207. PubMed ID: 26267515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes.
    Mahadav A; Kontsedalov S; Czosnek H; Ghanim M
    Insect Biochem Mol Biol; 2009 Oct; 39(10):668-76. PubMed ID: 19683053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upregulation of temperature susceptibility in Bemisia tabaci upon acquisition of Tomato yellow leaf curl virus (TYLCV).
    Pusag JC; Hemayet Jahan SM; Lee KS; Lee S; Lee KY
    J Insect Physiol; 2012 Oct; 58(10):1343-8. PubMed ID: 22841829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid cold hardening in young hoppers of the migratory locust Locusta migratoria L. (Orthoptera: Acridiidae).
    Wang XH; Kang L
    Cryo Letters; 2003; 24(5):331-40. PubMed ID: 14566393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa.
    Huang LH; Wang CZ; Kang L
    J Insect Physiol; 2009 Mar; 55(3):279-85. PubMed ID: 19133268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae).
    Powell SJ; Bale JS
    J Insect Physiol; 2004 Apr; 50(4):277-84. PubMed ID: 15081820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Heat Shock Protein Genes in Different Developmental Stages and After Temperature Stress in the Maize Weevil (Coleoptera: Curculionidae).
    Tungjitwitayakul J; Tatun N; Vajarasathira B; Sakurai S
    J Econ Entomol; 2015 Jun; 108(3):1313-23. PubMed ID: 26470260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae).
    Ju RT; Xiao YY; Li B
    J Insect Physiol; 2011 Nov; 57(11):1577-82. PubMed ID: 21872604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profiles of heat shock proteins 70 and 90 from Empoasca onukii (Hemiptera: Cicadellidae) in response to temperature stress.
    Qiao L; Wu JX; Qin DZ; Liu XC; Lu ZC; Lv LZ; Pan ZL; Chen H; Li GW
    J Insect Sci; 2015; 15(1):. PubMed ID: 25888707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris.
    Shintani Y; Ishikawa Y
    J Insect Physiol; 2007 Oct; 53(10):1055-62. PubMed ID: 17628587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercooling capacity and cold hardiness of the adults of the sycamore lace bug, corythucha ciliata (Hemiptera:Tingidae).
    Ju RT; Wang F; Xiao YY; Li B
    Cryo Letters; 2010; 31(6):445-53. PubMed ID: 21410013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua.
    Zheng X; Cheng W; Wang X; Lei C
    Cryobiology; 2011 Dec; 63(3):164-9. PubMed ID: 21878325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple generation effects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B.
    Guo JY; Cong L; Wan FH
    Insect Sci; 2013 Aug; 20(4):541-9. PubMed ID: 23955949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage.
    Jiang R; Qi LD; Du YZ; Li YX
    J Econ Entomol; 2017 Oct; 110(5):2190-2198. PubMed ID: 28961720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and characterization of two heat shock proteins in Thitarodes pui (Lepidoptera: Hepialidae).
    Zou Z; Sun Z; Li J; Zhang G
    Cryo Letters; 2011; 32(3):225-39. PubMed ID: 21766152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies.
    Hu JT; Chen B; Li ZH
    J Insect Physiol; 2014 Aug; 67():105-13. PubMed ID: 24992713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress.
    Wang XR; Wang C; Ban FX; Zhu DT; Liu SS; Wang XW
    Insect Sci; 2019 Feb; 26(1):44-57. PubMed ID: 28714602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.