These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 22182622)
41. The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. Jensen D; Overgaard J; Sørensen JG J Insect Physiol; 2007 Feb; 53(2):179-86. PubMed ID: 17234205 [TBL] [Abstract][Full Text] [Related]
42. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090 [TBL] [Abstract][Full Text] [Related]
43. Developing extreme heat acclimation in Bemisia tabaci Mediterranean (Hemiptera: Aleyrodidae). Jhan PK; Lee KY Arch Insect Biochem Physiol; 2022 Jun; 110(2):e21890. PubMed ID: 35322468 [TBL] [Abstract][Full Text] [Related]
44. The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli. Seo JS; Lee YM; Park HG; Lee JS Biochem Biophys Res Commun; 2006 Feb; 340(3):901-8. PubMed ID: 16403454 [TBL] [Abstract][Full Text] [Related]
45. Interspecific interactions between Bemisia tabaci biotype B and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Zhang GF; Li DC; Liu TX; Wan FH; Wang JJ Environ Entomol; 2011 Feb; 40(1):140-50. PubMed ID: 22182623 [TBL] [Abstract][Full Text] [Related]
46. Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient. Rochefort S; Berthiaume R; Hébert C; Charest M; Bauce E J Insect Physiol; 2011 Jun; 57(6):751-9. PubMed ID: 21356214 [TBL] [Abstract][Full Text] [Related]
47. Cold tolerance of first-instar nymphs of the Australian plague locust, Chortoicetes terminifera. Woodman JD J Insect Physiol; 2010 Apr; 56(4):376-9. PubMed ID: 19932699 [TBL] [Abstract][Full Text] [Related]
48. Hydrogen peroxide induces heat shock protein and proto-oncogene mRNA accumulation in Xenopus laevis A6 kidney epithelial cells. Muller M; Gauley J; Heikkila JJ Can J Physiol Pharmacol; 2004 Jul; 82(7):523-9. PubMed ID: 15389300 [TBL] [Abstract][Full Text] [Related]
49. Asymmetry in thermal tolerance trade-offs between the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Elbaz M; Weiser M; Morin S J Evol Biol; 2011 May; 24(5):1099-109. PubMed ID: 21338436 [TBL] [Abstract][Full Text] [Related]
50. Characterization of the heat shock protein 90 gene in the plant parasitic nematode Meloidogyne artiellia and its expression as related to different developmental stages and temperature. De Luca F; Di Vito M; Fanelli E; Reyes A; Greco N; De Giorgi C Gene; 2009 Jul; 440(1-2):16-22. PubMed ID: 19348876 [TBL] [Abstract][Full Text] [Related]
51. Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Lü ZC; Wan FH Comp Biochem Physiol Part D Genomics Proteomics; 2008 Dec; 3(4):257-62. PubMed ID: 20494845 [TBL] [Abstract][Full Text] [Related]
52. Asymmetric adaptation to indolic and aliphatic glucosinolates in the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Elbaz M; Halon E; Malka O; Malitsky S; Blum E; Aharoni A; Morin S Mol Ecol; 2012 Sep; 21(18):4533-46. PubMed ID: 22849567 [TBL] [Abstract][Full Text] [Related]
53. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Yi SX; Moore CW; Lee RE Apoptosis; 2007 Jul; 12(7):1183-93. PubMed ID: 17245639 [TBL] [Abstract][Full Text] [Related]
54. Expression of heat shock protein 70a mRNA in Bombyx mori diapause eggs. Moribe Y; Oka K; Niimi T; Yamashita O; Yaginuma T J Insect Physiol; 2010 Sep; 56(9):1246-52. PubMed ID: 20371249 [TBL] [Abstract][Full Text] [Related]
55. Effect of Zohar LQ-215, a biorational surfactant, on the sweetpotato whitefly Bemisia tabaci (biotype b). Ishaaya I; Khasdan V; Horowitz AR Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):295-303. PubMed ID: 17385496 [TBL] [Abstract][Full Text] [Related]
57. Molecular characterization and oxidative stress response of an intracellular Cu/Zn superoxide dismutase (CuZnSOD) of the whitefly, Bemisia tabaci. Li JM; Su YL; Gao XL; He J; Liu SS; Wang XW Arch Insect Biochem Physiol; 2011 Jul; 77(3):118-33. PubMed ID: 21541989 [TBL] [Abstract][Full Text] [Related]
58. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. Colinet H; Lee SF; Hoffmann A FEBS J; 2010 Jan; 277(1):174-85. PubMed ID: 19968716 [TBL] [Abstract][Full Text] [Related]
59. RNA interference of a heat shock protein, Hsp70, loses its protection role in indirect chilling injury to the beet armyworm, Spodoptera exigua. Choi BG; Hepat R; Kim Y Comp Biochem Physiol A Mol Integr Physiol; 2014 Feb; 168():90-5. PubMed ID: 24309290 [TBL] [Abstract][Full Text] [Related]
60. Relationship between cold hardiness and supercooling point in Aedes albopictus eggs. Hanson SM; Craig GB J Am Mosq Control Assoc; 1995 Mar; 11(1):35-8. PubMed ID: 7616187 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]