BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 22182706)

  • 1. Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans.
    Cha YJ; Lee J; Choi SS
    Chemosphere; 2012 Mar; 87(1):49-54. PubMed ID: 22182706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From the Cover: ZnO Nanoparticles Enhanced Germ Cell Apoptosis in Caenorhabditis elegans, in Comparison with ZnCl2.
    O'Donnell B; Huo L; Polli JR; Qiu L; Collier DN; Zhang B; Pan X
    Toxicol Sci; 2017 Apr; 156(2):336-343. PubMed ID: 28003440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term exposure to 6-PPD quinone reduces reproductive capacity by enhancing germline apoptosis associated with activation of both DNA damage and cell corpse engulfment in Caenorhabditis elegans.
    Hua X; Feng X; Liang G; Chao J; Wang D
    J Hazard Mater; 2023 Jul; 454():131495. PubMed ID: 37119572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence.
    Pluskota A; Horzowski E; Bossinger O; von Mikecz A
    PLoS One; 2009 Aug; 4(8):e6622. PubMed ID: 19672302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size, polyglycerol grafting, and net surface charge of iron oxide nanoparticles determine their interaction and toxicity in Caenorhabditis elegans.
    Zou Y; Shikano Y; Nishina Y; Komatsu N; Kage-Nakadai E; Fujiwara M
    Chemosphere; 2024 Jun; 358():142060. PubMed ID: 38648981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple stressor effects on a model soil nematode, Caenorhabditis elegans: Combined effects of the pathogen Klebsiella pneumoniae and zinc oxide nanoparticles.
    Cochran JP; Unrine JM; Coyne M; Tsyusko OV
    Sci Total Environ; 2023 Mar; 865():161307. PubMed ID: 36596421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Oxides (GOs) with Different Lateral Dimensions and Thicknesses Affect the Molecular Response in
    Martin-Folgar R; Esteban-Arranz A; Negri V; Morales M
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green Synthesis of Magnesium Oxide Nanoparticles by Using
    Ali S; Sudha KG; Thirumalaivasan N; Ahamed M; Pandiaraj S; Rajeswari VD; Vinayagam Y; Thiruvengadam M; Govindasamy R
    Bioengineering (Basel); 2023 Feb; 10(3):. PubMed ID: 36978692
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Gubert P; Gubert G; Oliveira RC; Fernandes ICO; Bezerra IC; Ramos B; Lima MF; Rodrigues DT; Cruz AFND; Pereira EC; Ávila DS; Mosca DH
    Toxics; 2023 Mar; 11(3):. PubMed ID: 36977004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the surface of graphene oxide with bovine serum albumin for improved biocompatibility in
    Sivaselvam S; Mohankumar A; Thiruppathi G; Sundararaj P; Viswanathan C; Ponpandian N
    Nanoscale Adv; 2020 Nov; 2(11):5219-5230. PubMed ID: 36132053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Glucose Diet Attenuates the Dopaminergic Neuronal Function in
    de Guzman ACV; Kang S; Kim EJ; Kim JH; Jang N; Cho JH; Choi SS
    ACS Omega; 2022 Sep; 7(36):32339-32348. PubMed ID: 36120016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A circular RNA
    Shi L; Jia X; Guo T; Cheng L; Han X; Wu Q; Wang D
    RSC Adv; 2019 Apr; 9(24):13722-13735. PubMed ID: 35519596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citric Acid-Mediated Microwave-Hydrothermal Synthesis of Mesoporous F-Doped HAp Nanorods from Bio-Waste for Biocidal Implant Applications.
    Karunakaran G; Cho EB; Kumar GS; Kolesnikov E; Sudha KG; Mariyappan K; Han A; Choi SS
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles.
    Mohammadinejad R; Moosavi MA; Tavakol S; Vardar DÖ; Hosseini A; Rahmati M; Dini L; Hussain S; Mandegary A; Klionsky DJ
    Autophagy; 2019 Jan; 15(1):4-33. PubMed ID: 30160607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C. elegans-on-a-chip for in situ and in vivo Ag nanoparticles' uptake and toxicity assay.
    Kim JH; Lee SH; Cha YJ; Hong SJ; Chung SK; Park TH; Choi SS
    Sci Rep; 2017 Jan; 7():40225. PubMed ID: 28067319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans.
    Mashock MJ; Zanon T; Kappell AD; Petrella LN; Andersen EC; Hristova KR
    PLoS One; 2016; 11(12):e0167613. PubMed ID: 27911941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage.
    Charão MF; Souto C; Brucker N; Barth A; Jornada DS; Fagundez D; Ávila DS; Eifler-Lima VL; Guterres SS; Pohlmann AR; Garcia SC
    Int J Nanomedicine; 2015; 10():5093-106. PubMed ID: 26300641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental studies with nematodes in ecotoxicology: an overview.
    Hägerbäumer A; Höss S; Heininger P; Traunspurger W
    J Nematol; 2015 Mar; 47(1):11-27. PubMed ID: 25861113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans.
    Jung SK; Qu X; Aleman-Meza B; Wang T; Riepe C; Liu Z; Li Q; Zhong W
    Environ Sci Technol; 2015 Feb; 49(4):2477-85. PubMed ID: 25611253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review.
    Rim KT; Song SW; Kim HY
    Saf Health Work; 2013 Dec; 4(4):177-86. PubMed ID: 24422173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.